File size: 9,256 Bytes
75d0925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f48bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import pinecone
import torch
import numpy as np
from PIL import Image
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, UniPCMultistepScheduler
from datasets import load_dataset
from transformers import pipeline
import gradio as gr

import pinecone

from pinecone import Pinecone

pc = Pinecone(api_key="23afd6c8-4e05-4f77-a069-95ad7b18e6cd")

from datasets import load_dataset

# Load OpenAI CLIP model for embedding generation
import open_clip
model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='openai')
tokenizer = open_clip.get_tokenizer('ViT-B-32')

depth_estimator = pipeline("depth-estimation")

# Initialize Stable Diffusion ControlNet

from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel
from diffusers.utils.import_utils import is_xformers_available
from diffusers.schedulers import UniPCMultistepScheduler
import torch

controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11f1p_sd15_depth", torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
    "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
).to("cuda")

# Load your fine-tuned LoRA adapter
lora_weights_path = "rohith2812/atoi-lora-finetuned-v1"  # Replace with your LoRA weight file path
pipe.unet.load_attn_procs(lora_weights_path)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()

if is_xformers_available():
    pipe.enable_xformers_memory_efficient_attention()

print("Pipeline is ready with fine-tuned LoRA adapter!")

transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")

def retrieve_image_from_text_prompt(prompt, selected_index, knowledge_database):
    """
    Retrieve the most relevant image based on the text prompt from the selected Pinecone index.
    """
    dataset = load_dataset(knowledge_database, split="train")
    # Initialize the Pinecone index dynamically based on user selection
    index = pc.Index(selected_index)

    # Generate Embedding for Text
    text_tokens = tokenizer([prompt])
    with torch.no_grad():
        query_embedding = model.encode_text(text_tokens).cpu().numpy().flatten()

    # Query Pinecone
    results = index.query(vector=query_embedding.tolist(), top_k=1, include_metadata=True, namespace="text_embeddings")
    if results and "matches" in results and results["matches"]:
        best_match = results["matches"][0]
        image_path = best_match["metadata"]["image_path"]
        description = best_match["metadata"]["description"]

        # Match the image path to the dataset to retrieve the image
        for item in dataset:
            if item["image_path"].endswith(image_path):
                return {"image": item["image"], "description": description}
    return None

# Function to Generate Depth Map
def get_depth_map(image):
    image = depth_estimator(image)["depth"]
    image = np.array(image)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    detected_map = torch.from_numpy(image).float() / 255.0
    return detected_map.permute(2, 0, 1).unsqueeze(0).half().to("cuda")

from transformers import CLIPProcessor, CLIPModel
import torch

# Load CLIP model and processor
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to("cuda")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

def calculate_clip_score(image, text):
    """Calculate CLIP score for an image and text pair."""
    inputs = clip_processor(text=[text], images=image, return_tensors="pt", padding=True).to("cuda")
    outputs = clip_model(**inputs)
    logits_per_image = outputs.logits_per_image  # Image-to-text similarity score
    clip_score = logits_per_image.softmax(dim=1).max().item()
    return clip_score


def audio_to_image(audio, guidance_scale, num_inference_steps, selected_index, knowledge_database):
    # Initialize Pinecone index based on user selection
    dataset = load_dataset(knowledge_database, split="train")

    index = pc.Index(selected_index)
    print(f"Connected to Pinecone index: {selected_index}")

    # Step 1: Transcribe Audio
    sr, y = audio
    if y.ndim > 1:
        y = y.mean(axis=1)  # Convert to mono
    y = y.astype(np.float32)
    y /= np.max(np.abs(y))
    transcription = transcriber({"sampling_rate": sr, "raw": y})["text"]
    print(f"Transcribed Text: {transcription}")

    # Step 2: Retrieve Image Based on Text Prompt
    print("Retrieving image from vector database...")
    retrieved_data = retrieve_image_from_text_prompt(transcription, selected_index, knowledge_database)
    if not retrieved_data:
        return transcription, None, None, "No relevant image found.", None

    retrieved_image = retrieved_data["image"]
    retrieved_description = retrieved_data["description"]

    # Step 3: Generate Depth Map
    print("Generating depth map...")
    depth_map = get_depth_map(retrieved_image)

    # Step 4: Enhance Image Using Stable Diffusion
    print("Enhancing image with Stable Diffusion...")
    enhanced_image = pipe(
        prompt=f"{transcription}. Ensure formulas are accurate and text is clean and legible.",
        image=retrieved_image,
        control_image=depth_map,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps
    ).images[0]

    # Step 5: Calculate CLIP Score
    print("Calculating CLIP Score...")
    clip_score = calculate_clip_score(enhanced_image, transcription)

    # Return Retrieved and Enhanced Images with CLIP Score
    return transcription, retrieved_image, enhanced_image, retrieved_description, clip_score

# Gradio Interface Function
def gradio_interface(audio, guidance_scale, num_inference_steps, selected_index, knowledge_database):
    transcription, retrieved_image, enhanced_image, retrieved_description, clip_score = audio_to_image(
        audio, guidance_scale, num_inference_steps, selected_index, knowledge_database
    )
    if enhanced_image is None:
        return transcription, "No relevant image found.", None, retrieved_description, "N/A"
    return transcription, retrieved_image, enhanced_image, retrieved_description, clip_score

# Enhanced Gradio UI
with gr.Blocks(title="Audio-to-Image Generation") as demo:
    gr.Markdown(
        """
        # 🎨 Audio-to-Image Generation with AI
        Speak into the microphone, and watch as this AI application retrieves a relevant image from the database,
        enhances it based on your input, and displays its description and CLIP Score.
        """
    )

    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(type="numpy", label="🎀 Speak Your Prompt")
            guidance_scale_input = gr.Slider(
                minimum=1.0, maximum=20.0, step=0.5, value=8.5, label="πŸŽ›οΈ Guidance Scale"
            )
            num_inference_steps_input = gr.Slider(
                minimum=10, maximum=200, step=10, value=100, label="πŸ”’ Number of Inference Steps"
            )
            index_selection = gr.Dropdown(
                choices=["project-atoi-v2", "project-atoi"],
                value="project-atoi-v2",
                label="πŸ—‚οΈ Select Pinecone Index"
            )
            knowledge_database_selection = gr.Dropdown(
                choices=["rohith2812/atoigeneration-final-data", "rxc5667/3wordsdataset_noduplicates"],
                value="rxc5667/3wordsdataset_noduplicates",
                label="πŸ“š Select Knowledge Database"
            )
            submit_button = gr.Button("Generate Image")
        with gr.Column():
            transcription_output = gr.Textbox(label="πŸ“ Transcribed Prompt")
            retrieved_image_output = gr.Image(label="πŸ–ΌοΈ Retrieved Image")
            enhanced_image_output = gr.Image(label="✨ Enhanced Image")
            retrieved_description_output = gr.Textbox(label="πŸ“œ Retrieved Description")
            clip_score_output = gr.Textbox(label="πŸ“Š CLIP Score")

    examples = gr.Examples(
        examples=[["a picture explain line of best fit in linear regression"], ["Support vector machines"], ["A picture explaining multi[ple components in PCA]"]],
        inputs=[
            audio_input,
            guidance_scale_input,
            num_inference_steps_input,
            index_selection,
            knowledge_database_selection,
        ],
        outputs=[
            transcription_output,
            retrieved_image_output,
            enhanced_image_output,
            retrieved_description_output,
            clip_score_output,
        ],
        label="Examples",
    )

    submit_button.click(
        fn=gradio_interface,
        inputs=[
            audio_input,
            guidance_scale_input,
            num_inference_steps_input,
            index_selection,
            knowledge_database_selection,
        ],
        outputs=[
            transcription_output,
            retrieved_image_output,
            enhanced_image_output,
            retrieved_description_output,
            clip_score_output,
        ],
    )

# Launch Gradio Interface
if __name__ == "__main__":
    demo.launch()