|
from transformers import pipeline |
|
import time |
|
import gradio as gr |
|
|
|
|
|
def get_visual_qa_tab(): |
|
salesforce_model_name = "Salesforce/blip-vqa-base" |
|
salesforce_pipe = pipeline("visual-question-answering", model=salesforce_model_name) |
|
|
|
dandelin_model_name = "dandelin/vilt-b32-finetuned-vqa" |
|
dandelin_pipe = pipeline("visual-question-answering", model=dandelin_model_name) |
|
|
|
pipe_map = { |
|
salesforce_model_name: salesforce_pipe, |
|
dandelin_model_name: dandelin_pipe |
|
} |
|
|
|
def gradio_process(model_name, image, text): |
|
pipe = pipe_map[model_name] |
|
start = time.time() |
|
output = pipe(image, text) |
|
end = time.time() |
|
time_spent = end - start |
|
result = output[0]['answer'] |
|
|
|
return [result, time_spent] |
|
|
|
with gr.TabItem("Visual Q&A") as visual_qa_tab: |
|
gr.Markdown("# Visual Question & Answering") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
|
|
input_image = gr.Image(label="Upload Image", type="pil") |
|
input_text = gr.Textbox(label="Question") |
|
model_selector = gr.Dropdown([salesforce_model_name, dandelin_model_name], |
|
label = "Select Model") |
|
|
|
|
|
process_btn = gr.Button("Generate answer") |
|
|
|
with gr.Column(): |
|
|
|
elapsed_result = gr.Textbox(label="Seconds elapsed", lines=1) |
|
output_text = gr.Textbox(label="Answer") |
|
|
|
|
|
process_btn.click( |
|
fn=gradio_process, |
|
inputs=[ |
|
model_selector, |
|
input_image, |
|
input_text |
|
], |
|
outputs=[output_text, elapsed_result] |
|
) |
|
|
|
return visual_qa_tab |
|
|