Spaces:
Running
Running
from math import e | |
import streamlit as st | |
from PIL import Image | |
st.title("NLP project") | |
description_show_options = ['main','film_review','toxic_messages','над проектом работали'] | |
description_show = st.sidebar.radio("Description", description_show_options) | |
if description_show == 'над проектом работали': | |
st.title(" над проектом работали") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
romaimage = Image.open("images/roma.png") | |
st.image(romaimage, caption="Рома | custom attention enjoyer | DevOps", use_column_width=True, ) | |
with col2: | |
leraimage = Image.open("images/Lera.png") | |
st.image(leraimage, caption="Лера | GPT bender | Data Scientist", use_column_width=True) | |
with col3: | |
olyaimage = Image.open("images/baur.jpg") | |
st.image(olyaimage, caption="Бауржан | TF/IDF master | Frontender", use_column_width=True) | |
elif description_show == 'GPT': | |
st.title("GPT") | |
elif description_show == 'main': | |
st.title("main") | |
elif description_show == 'film_review': | |
st.title("film_review") | |
st.write("------------") | |
st.write("BERT embedding + LSTM + roman attention") | |
text = """Weighted F1-score: 0.70\n | |
Classification Report: | |
precision recall f1-score support | |
Bad 0.67 0.81 0.74 960 | |
Neutral 0.65 0.50 0.56 922 | |
Good 0.82 0.82 0.82 896 | |
----- | |
accuracy 0.71 2778 | |
macro avg 0.71 0.71 0.71 2778 | |
weighted avg 0.71 0.71 0.71 2778""" | |
st.markdown(text) | |
png = Image.open("images/film_lstm.png") | |
st.image(png, use_column_width=True) | |
st.write("------------") | |
st.write("tf-idf + Logreg") | |
png = Image.open("images/film_tfidf.jpg") | |
st.image(png, use_column_width=True) | |
png = Image.open("images/tf_idf_cm.jpg") | |
st.image(png, use_column_width=True) | |
st.write("------------") | |
st.write("Bert embedding + LogReg") | |
png = Image.open("images/film_bert.jpg") | |
st.image(png, use_column_width=True) | |
elif description_show == 'toxic_messages': | |
st.title("toxic_messages") | |
png = Image.open("images/toxic.png") | |
st.image(png, use_column_width=True) | |
elif description_show == 'toxic_messages': | |
st.title("toxic_messages") | |