Spaces:
Sleeping
Sleeping
File size: 7,194 Bytes
44622dc 68677f3 6c6129a d7885fe 7536bc5 d7885fe 44622dc 68677f3 44622dc 68677f3 44622dc 73342a7 44622dc 73342a7 8d6d100 73342a7 44622dc 68677f3 73342a7 3eda0a9 043db6a 68677f3 89d4922 9609d1c e6873d1 73342a7 9609d1c d7885fe 73342a7 68677f3 73342a7 43aea8d 73342a7 68677f3 73342a7 d7885fe 73342a7 d7885fe 73342a7 d7885fe 73342a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import getpass
import pdb
import os
import torch
from rouge_score import scoring
from contextlib import contextmanager
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
local coherecence with classifier trained on the shuffle task, window=3 sentences
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
WINDOW_SIZE = 3
@contextmanager
def filter_logging_context():
def filter_log(record):
return False if "This IS expected if you are initializing" in record.msg else True
logger = datasets.utils.logging.get_logger("transformers.modeling_utils")
logger.addFilter(filter_log)
try:
yield
finally:
logger.removeFilter(filter_log)
class Scorer:
def __init__(
self,
model_type=None,
batch_size=64,
device=None,
use_fast_tokenizer=False):
if device is not None:
# assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
device = "cuda"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = device
self.model_type = model_type
self.batch_size = batch_size
self._tokenizer = AutoTokenizer.from_pretrained("roberta-large")
self._model = AutoModelForSequenceClassification.from_pretrained(f"ronaldahmed/ccl_win-{model_type}")
self._model.to(device)
self._model.eval()
@property
def hash(self):
return self.model_type
def preprocess_adjacent_window(self,preds):
pred_list = []
lens = []
for pred in preds:
sents = pred.split("\n")
ns = len(sents)
if ns <= WINDOW_SIZE:
pred_list.append(pred)
lens.append(1)
else:
llen = 0
for i in range(0,ns-WINDOW_SIZE+1):
sss = sents[i:i+WINDOW_SIZE]
ss = "\n".join(sss)
pred_list.append(ss)
llen += 1
lens.append(llen)
#
return pred_list,lens
def score(self,predictions):
sent_lens = [len(x.split("\n")) for x in predictions]
pred_list,len_by_sample = self.preprocess_adjacent_window(predictions)
scores = []
n_preds = len(pred_list)
with torch.no_grad():
for b in range(0,n_preds,self.batch_size):
strides = [x.lower() for x in pred_list[b:b+self.batch_size]]
tinput = self._tokenizer(strides,padding=True,truncation=True,max_length=512,return_tensors="pt")
tinput = {k:v.to(self.device) for k,v in tinput.items()}
output = self._model(**tinput)
probs = torch.softmax(output.logits,dim=-1).detach().cpu().numpy()
scores.extend(probs[:,0].tolist())
#
results = []
offset = 0
for i,_len in enumerate(len_by_sample):
score = float(np.mean(scores[offset:offset+_len])) if sent_lens[i]>1 else 0.
results.append(score)
offset += _len
#
return results
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ccl_win(evaluate.Measurement):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MeasurementInfo(
# This is the description that will appear on the modules page.
module_type="measurement",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('string'),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(self, predictions, dataset="arxiv", batch_size: int = 16, device=None, use_aggregator=True):
"""Returns the scores"""
hashcode = dataset
with filter_logging_context():
if not hasattr(self, "cached_scorer") or self.cached_scorer.hash != hashcode:
self.cached_scorer = Scorer(
model_type=dataset,
batch_size=batch_size,
device=device,
)
results = self.cached_scorer.score(predictions)
outres = {}
aggregator = None
if use_aggregator:
np.random.seed(42)
aggregator = scoring.BootstrapAggregator()
for score in results:
aggregator.add_scores({"loc_coh_ccl": score})
#
res = aggregator.aggregate()
for k in res: outres[k] = res[k].mid
else:
outres = {"loc_coh_ccl": results}
return outres
|