Spaces:
Runtime error
Runtime error
File size: 6,414 Bytes
33eb5d4 e873d33 33eb5d4 27e2770 e873d33 33eb5d4 e873d33 27e2770 e1f535f 33eb5d4 e103bde 27e2770 1694358 33eb5d4 e873d33 e103bde 33eb5d4 e873d33 33eb5d4 79b6488 e103bde 79b6488 5e7a3eb 79b6488 33eb5d4 6f068fd 33eb5d4 4a6ff7a 6f068fd 4a6ff7a 6f068fd 33eb5d4 6f068fd 33eb5d4 6f068fd 33eb5d4 b2a3d53 6f068fd 33eb5d4 6f068fd 6509a73 33eb5d4 6509a73 d46e61e 6509a73 d46e61e 6509a73 d46e61e 6509a73 79b6488 6509a73 1d11011 1694358 3380f3c 1694358 1d11011 79b6488 6509a73 d46e61e 6509a73 33eb5d4 d46e61e 33eb5d4 b2a3d53 33eb5d4 b2a3d53 d46e61e 6509a73 dfecb5b 27e2770 cdbbabd dfecb5b 6509a73 9608c6c 6509a73 d48c285 6509a73 b2a3d53 5e7a3eb d46e61e 5e7a3eb 79b6488 b2a3d53 79b6488 1d25e2a dfecb5b 79b6488 b2a3d53 94ce4d7 b092b28 dfecb5b 6509a73 b2a3d53 79b6488 b2a3d53 dfecb5b b2a3d53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import collections
import os
from typing import Dict, List
import gradio as gr
from index_list import read_index_list
from protein_viz import get_pdb_title, render_html
from search_engine import MilvusParams, ProteinSearchEngine
model_repo = "ronig/protein_biencoder"
available_indexes = read_index_list()
engine = ProteinSearchEngine(
milvus_params=MilvusParams(
uri="https://in03-ddab8e9a5a09fcc.api.gcp-us-west1.zillizcloud.com",
token=os.environ.get("MILVUS_TOKEN"),
db_name="Protein",
collection_name="Peptriever",
),
model_repo=model_repo,
)
max_results = 1000
choice_sep = " | "
max_seq_length = 50
def search_and_display(seq, max_res, index_selection):
n_search_res = 1024
_validate_sequence_length(seq)
max_res = int(limit_n_results(max_res))
if index_selection == "All Species":
index_selection = None
search_res = engine.search_by_sequence(
seq, n=n_search_res, organism=index_selection
)
agg_search_results = aggregate_search_results(search_res, max_res)
formatted_search_results = format_search_results(agg_search_results)
results_options = update_dropdown_menu(agg_search_results)
return formatted_search_results, results_options
def _validate_sequence_length(seq):
if len(seq) > max_seq_length:
raise gr.Error("Only peptide input is currently supported")
def limit_n_results(n):
return max(min(n, max_results), 1)
def aggregate_search_results(raw_results: List[dict], max_res: int) -> Dict[str, dict]:
aggregated_by_uniprot = collections.defaultdict(list)
for raw_result in raw_results:
entry = select_keys(
raw_result,
keys=["pdb_name", "chain_id", "score", "organism", "uniprot_id", "genes"],
)
uniprot_id = raw_result["uniprot_id"]
if uniprot_id is not None:
aggregated_by_uniprot[uniprot_id].append(entry)
if len(aggregated_by_uniprot) >= max_res:
return dict(aggregated_by_uniprot)
return dict(aggregated_by_uniprot)
def select_keys(d: dict, keys: List[str]):
return {key: d[key] for key in keys}
def format_search_results(agg_search_results):
formatted_search_results = {}
for uniprot_id, entries in agg_search_results.items():
entry = entries[0]
organism = entry["organism"]
score = entry["score"]
genes = entry["genes"]
key = f"Uniprot ID: {uniprot_id} | Organism: {organism} | Gene Names: {genes}"
formatted_search_results[key] = score
return formatted_search_results
def update_dropdown_menu(agg_search_res):
choices = []
for uniprot_id, entries in agg_search_res.items():
for entry in entries:
choice = choice_sep.join(
[
uniprot_id,
entry["pdb_name"],
entry["chain_id"],
entry["genes"] or "",
]
)
choices.append(choice)
if choices:
update = gr.update(
gr.Dropdown.get_component_class_id(),
choices=choices,
interactive=True,
value=choices[0],
visible=True,
)
else:
update = gr.update(
gr.Dropdown.get_component_class_id(),
choices=choices,
interactive=True,
visible=False,
value=None,
)
return update
def parse_pdb_search_result(raw_result):
prot = raw_result["pdb_name"]
chain = raw_result["chain_id"]
value = raw_result["score"]
gene_names = raw_result["genes"]
species = raw_result["organism"]
key = f"PDB: {prot}.{chain}"
if gene_names is not None:
key += f" | Genes: {gene_names} | Organism: {species}"
return key, value
def switch_viz(new_choice):
if new_choice is None:
html = ""
title_update = gr.update(gr.Markdown.get_component_class_id(), visible=False)
description_update = gr.update(
gr.Markdown.get_component_class_id(), value=None, visible=False
)
else:
choice_parts = new_choice.split(choice_sep)
pdb_id, chain = choice_parts[1:3]
title_update = gr.update(gr.Markdown.get_component_class_id(), visible=True)
pdb_title = get_pdb_title(pdb_id)
new_value = f"""**PDB Title**: {pdb_title}"""
description_update = gr.update(
gr.Markdown.get_component_class_id(), value=new_value, visible=True
)
html = render_html(pdb_id=pdb_id, chain=chain)
return html, title_update, description_update
with gr.Blocks() as demo:
with gr.Column():
with gr.Column():
with gr.Row():
with gr.Column():
seq_input = gr.Textbox(value="APTMPPPLPP", label="Input Sequence")
n_results = gr.Number(10, label="N Results")
index_selector = gr.Dropdown(
choices=available_indexes,
value="All Species",
multiselect=False,
visible=True,
label="Index",
)
search_button = gr.Button("Search", variant="primary")
search_results = gr.Label(
num_top_classes=max_results, label="Search Results", scale=2
)
viz_header = gr.Markdown("## Visualization", visible=False)
results_selector = gr.Dropdown(
choices=[],
multiselect=False,
visible=False,
label="Visualized Search Result",
)
viz_body = gr.Markdown("", visible=False)
protein_viz = gr.HTML(
value=render_html(pdb_id=None, chain=None),
label="Protein Visualization",
)
gr.Examples(
["APTMPPPLPP", "KFLIYQMECSTMIFGL", "PHFAMPPIHEDHLE", "AEERIISLD"],
inputs=[seq_input],
)
search_button.click(
search_and_display,
inputs=[seq_input, n_results, index_selector],
outputs=[search_results, results_selector],
)
results_selector.change(
switch_viz, inputs=results_selector, outputs=[protein_viz, viz_header, viz_body]
)
if __name__ == "__main__":
demo.launch()
|