File size: 8,485 Bytes
012083a
 
 
 
 
 
 
 
 
fa6e350
012083a
 
 
de534e0
012083a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb3e68
37c809c
5c5b7a8
 
2fb3e68
012083a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6e8a08
012083a
 
 
 
 
 
 
2c811e3
 
 
012083a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e51efa
012083a
 
 
 
 
 
 
 
 
 
 
5c86e42
012083a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import streamlit as st
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
import torch
import albumentations as albu
from torch.utils.data import DataLoader
from torch.utils.data import Dataset as BaseDataset
from catalyst.dl import SupervisedRunner
import segmentation_models_pytorch as smp
from io import StringIO


# streamlit run c:/Users/ronni/Downloads/polyp_seg_web_app/app.py


x_test_dir = 'test/test/images'
y_test_dir = 'test/test/masks'
ENCODER = 'mobilenet_v2'
ENCODER_WEIGHTS = 'imagenet'
CLASSES = ['polyp', 'background']
ACTIVATION = 'sigmoid'

preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)

def visualize(**images):
    """Plot images in one row."""
    n = len(images)
    plt.figure(figsize=(16, 5))
    for i, (name, image) in enumerate(images.items()):
        plt.subplot(1, n, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.title(' '.join(name.split('_')).title())
        plt.imshow(image)
    plt.savefig('x',dpi=400)
    st.image('x.png')


def get_training_augmentation():
    train_transform = [

        albu.HorizontalFlip(p=0.5),

        albu.ShiftScaleRotate(scale_limit=0.5, rotate_limit=0, shift_limit=0.1, p=1, border_mode=0),

        albu.Resize(576, 736, always_apply=True, p=1),

        albu.IAAAdditiveGaussianNoise(p=0.2),
        albu.IAAPerspective(p=0.5),

        albu.OneOf(
            [
                albu.CLAHE(p=1),
                albu.RandomBrightness(p=1),
                albu.RandomGamma(p=1),
            ],
            p=0.9,
        ),

        albu.OneOf(
            [
                albu.IAASharpen(p=1),
                albu.Blur(blur_limit=3, p=1),
                albu.MotionBlur(blur_limit=3, p=1),
            ],
            p=0.9,
        ),

        albu.OneOf(
            [
                albu.RandomContrast(p=1),
                albu.HueSaturationValue(p=1),
            ],
            p=0.9,
        ),
    ]
    return albu.Compose(train_transform)


def get_validation_augmentation():
    """Add paddings to make image shape divisible by 32"""
    test_transform = [
        albu.Resize(576, 736)
    ]
    return albu.Compose(test_transform)


def to_tensor(x, **kwargs):
    return x.transpose(2, 0, 1).astype('float32')

def get_preprocessing(preprocessing_fn):
    """Construct preprocessing transform

    Args:
        preprocessing_fn (callbale): data normalization function
            (can be specific for each pretrained neural network)
    Return:
        transform: albumentations.Compose

    """

    _transform = [
        albu.Lambda(image=preprocessing_fn),
        albu.Lambda(image=to_tensor, mask=to_tensor),
    ]
    return albu.Compose(_transform)

class Dataset(BaseDataset):
    """Args:
        images_dir (str): path to images folder
        masks_dir (str): path to segmentation masks folder
        class_values (list): values of classes to extract from segmentation mask
        augmentation (albumentations.Compose): data transfromation pipeline
            (e.g. flip, scale, etc.)
        preprocessing (albumentations.Compose): data preprocessing
            (e.g. noralization, shape manipulation, etc.)

    """

    CLASSES = ['polyp', 'background']

    def __init__(
            self,
            images_dir,
            masks_dir,
            classes=None,
            augmentation=None,
            preprocessing=None,
            single_file=False
    ):
        
        if single_file:
            self.ids = images_dir
            self.images_fps = os.path.join('test/test/images', self.ids)
            self.masks_fps = os.path.join('test/test/masks', self.ids)
        else:
            self.ids = os.listdir(images_dir)
            self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
            self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]

        # convert str names to class values on masks
        self.class_values = [self.CLASSES.index(cls.lower()) for cls in classes]

        self.augmentation = augmentation
        self.preprocessing = preprocessing

    def __getitem__(self, i):

        # read data
        image = cv2.imread(self.images_fps)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        mask = cv2.imread(self.masks_fps, 0)

        mask[np.where(mask < 8)] = 0
        mask[np.where(mask > 8)] = 255
        # extract certain classes from mask (e.g. polyp)
        masks = [(mask == v) for v in self.class_values]
        mask = np.stack(masks, axis=-1).astype('float')

        # apply augmentations
        if self.augmentation:
            sample = self.augmentation(image=image, mask=mask)
            image, mask = sample['image'], sample['mask']

        # apply preprocessing
        if self.preprocessing:
            sample = self.preprocessing(image=image, mask=mask)
            image, mask = sample['image'], sample['mask']

        return image, mask

    def __len__(self):
        return len(self.ids)

def model_infer(img_name):
    
    model = smp.UnetPlusPlus(
        encoder_name=ENCODER, 
        encoder_weights=ENCODER_WEIGHTS, 
        encoder_depth=5,
        decoder_channels=(256, 128, 64, 32, 16),
        classes=len(CLASSES), 
        activation=ACTIVATION,
        decoder_attention_type=None,
    )


    model.load_state_dict(torch.load('best.pth', map_location=torch.device('cpu'))['model_state_dict'])
    model.eval()

    test_dataset = Dataset(
        img_name,
        img_name,
        augmentation=get_validation_augmentation(),
        preprocessing=get_preprocessing(preprocessing_fn),
        classes=CLASSES,
        single_file=True
    )

    test_dataloader = DataLoader(test_dataset)

    loaders = {"infer": test_dataloader}

    runner = SupervisedRunner()

    logits = []
    f = 0
    for prediction in runner.predict_loader(model=model, loader=loaders['infer'],cpu=True):
        if f < 3:
            logits.append(prediction['logits'])
            f = f + 1
        else:
            break

    threshold = 0.5
    break_at = 1

    for i, (input, output) in enumerate(zip(
            test_dataset, logits)):
        image, mask = input

        image_vis = image.transpose(1, 2, 0)
        gt_mask = mask[0].astype('uint8')
        pr_mask = (output[0].numpy() > threshold).astype('uint8')[0]
        i = i + 1
        if i >= break_at:
            break
    
    return image_vis, gt_mask, pr_mask
PAGE_TITLE = "Polyp Segmentation" 
SUBHEADER = "Polyps are growths in the colon which can be precursors to colon cancer and are of particular interest \
             when performing colonoscopies. Improving automatic detection of polyps helps doctors analyze thousands of frames from colonoscopy videos \
             and leads to more reliable and efficient prevention of colon cancer. This web app uses a CNN trained on colonoscopy images from the Kvasir dataset for segmentation."

def file_selector(folder_path='.'):
    filenames = os.listdir(folder_path)
    selected_filename = st.selectbox('Select a file', filenames)
    return os.path.join(folder_path, selected_filename)

def file_selector_ui():
    folder_path = './test/test/images'
    filename = file_selector(folder_path=folder_path)
    printname = list(filename)
    printname[filename.rfind('\\')] = '/'
    st.write('You selected`%s`' % ''.join(printname))
    return filename

def file_upload(folder_path='.'):
    filenames = os.listdir(folder_path)
    folder_path = './test/test/images'
    uploaded_file = st.file_uploader("Choose a file")
    filename =     os.path.join(folder_path, uploaded_file.name)
    printname = list(filename)
    printname[filename.rfind('\\')] = '/'
    st.write('You selected`%s`' % ''.join(printname))
    return filename


def main():
    st.set_page_config(page_title=PAGE_TITLE, layout="wide")
    st.title(PAGE_TITLE)
    st.markdown(SUBHEADER)
    image_path = file_selector_ui()
#    image_path = file_upload()
    image_path = os.path.abspath(image_path)
    to_infer = image_path[image_path.rfind("\\") + 1:]

    if os.path.isfile(image_path) is True:
        _, file_extension = os.path.splitext(image_path)
        if file_extension == ".jpg":
            image_vis, gt_mask, pr_mask = model_infer(to_infer)
            visualize(
                image=image_vis, 
                #ground_truth_mask=gt_mask, 
                predicted_mask=pr_mask
            )            

if __name__ == "__main__":
    main()