Spaces:
Runtime error
Runtime error
File size: 8,468 Bytes
012083a fa6e350 012083a de534e0 012083a 2fb3e68 37c809c 5c5b7a8 2fb3e68 012083a a6e8a08 012083a 2c811e3 1f3d459 012083a 7e51efa 012083a 5c86e42 012083a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import streamlit as st
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
import torch
import albumentations as albu
from torch.utils.data import DataLoader
from torch.utils.data import Dataset as BaseDataset
from catalyst.dl import SupervisedRunner
import segmentation_models_pytorch as smp
from io import StringIO
# streamlit run c:/Users/ronni/Downloads/polyp_seg_web_app/app.py
x_test_dir = 'test/test/images'
y_test_dir = 'test/test/masks'
ENCODER = 'mobilenet_v2'
ENCODER_WEIGHTS = 'imagenet'
CLASSES = ['polyp', 'background']
ACTIVATION = 'sigmoid'
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
def visualize(**images):
"""Plot images in one row."""
n = len(images)
plt.figure(figsize=(16, 5))
for i, (name, image) in enumerate(images.items()):
plt.subplot(1, n, i + 1)
plt.xticks([])
plt.yticks([])
plt.title(' '.join(name.split('_')).title())
plt.imshow(image)
plt.savefig('x',dpi=400)
st.image('x.png')
def get_training_augmentation():
train_transform = [
albu.HorizontalFlip(p=0.5),
albu.ShiftScaleRotate(scale_limit=0.5, rotate_limit=0, shift_limit=0.1, p=1, border_mode=0),
albu.Resize(576, 736, always_apply=True, p=1),
albu.IAAAdditiveGaussianNoise(p=0.2),
albu.IAAPerspective(p=0.5),
albu.OneOf(
[
albu.CLAHE(p=1),
albu.RandomBrightness(p=1),
albu.RandomGamma(p=1),
],
p=0.9,
),
albu.OneOf(
[
albu.IAASharpen(p=1),
albu.Blur(blur_limit=3, p=1),
albu.MotionBlur(blur_limit=3, p=1),
],
p=0.9,
),
albu.OneOf(
[
albu.RandomContrast(p=1),
albu.HueSaturationValue(p=1),
],
p=0.9,
),
]
return albu.Compose(train_transform)
def get_validation_augmentation():
"""Add paddings to make image shape divisible by 32"""
test_transform = [
albu.Resize(576, 736)
]
return albu.Compose(test_transform)
def to_tensor(x, **kwargs):
return x.transpose(2, 0, 1).astype('float32')
def get_preprocessing(preprocessing_fn):
"""Construct preprocessing transform
Args:
preprocessing_fn (callbale): data normalization function
(can be specific for each pretrained neural network)
Return:
transform: albumentations.Compose
"""
_transform = [
albu.Lambda(image=preprocessing_fn),
albu.Lambda(image=to_tensor, mask=to_tensor),
]
return albu.Compose(_transform)
class Dataset(BaseDataset):
"""Args:
images_dir (str): path to images folder
masks_dir (str): path to segmentation masks folder
class_values (list): values of classes to extract from segmentation mask
augmentation (albumentations.Compose): data transfromation pipeline
(e.g. flip, scale, etc.)
preprocessing (albumentations.Compose): data preprocessing
(e.g. noralization, shape manipulation, etc.)
"""
CLASSES = ['polyp', 'background']
def __init__(
self,
images_dir,
masks_dir,
classes=None,
augmentation=None,
preprocessing=None,
single_file=False
):
if single_file:
self.ids = images_dir
self.images_fps = os.path.join('test/test/images', self.ids)
self.masks_fps = os.path.join('test/test/masks', self.ids)
else:
self.ids = os.listdir(images_dir)
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]
# convert str names to class values on masks
self.class_values = [self.CLASSES.index(cls.lower()) for cls in classes]
self.augmentation = augmentation
self.preprocessing = preprocessing
def __getitem__(self, i):
# read data
image = cv2.imread(self.images_fps)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask = cv2.imread(self.masks_fps, 0)
mask[np.where(mask < 8)] = 0
mask[np.where(mask > 8)] = 255
# extract certain classes from mask (e.g. polyp)
masks = [(mask == v) for v in self.class_values]
mask = np.stack(masks, axis=-1).astype('float')
# apply augmentations
if self.augmentation:
sample = self.augmentation(image=image, mask=mask)
image, mask = sample['image'], sample['mask']
# apply preprocessing
if self.preprocessing:
sample = self.preprocessing(image=image, mask=mask)
image, mask = sample['image'], sample['mask']
return image, mask
def __len__(self):
return len(self.ids)
def model_infer(img_name):
model = smp.UnetPlusPlus(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
encoder_depth=5,
decoder_channels=(256, 128, 64, 32, 16),
classes=len(CLASSES),
activation=ACTIVATION,
decoder_attention_type=None,
)
model.load_state_dict(torch.load('best.pth', map_location=torch.device('cpu'))['model_state_dict'])
model.eval()
test_dataset = Dataset(
img_name,
img_name,
augmentation=get_validation_augmentation(),
preprocessing=get_preprocessing(preprocessing_fn),
classes=CLASSES,
single_file=True
)
test_dataloader = DataLoader(test_dataset)
loaders = {"infer": test_dataloader}
runner = SupervisedRunner()
logits = []
f = 0
for prediction in runner.predict_loader(model=model, loader=loaders['infer'],cpu=True):
if f < 3:
logits.append(prediction['logits'])
f = f + 1
else:
break
threshold = 0.5
break_at = 1
for i, (input, output) in enumerate(zip(
test_dataset, logits)):
image, mask = input
image_vis = image.transpose(1, 2, 0)
gt_mask = mask[0].astype('uint8')
pr_mask = (output[0].numpy() > threshold).astype('uint8')[0]
i = i + 1
if i >= break_at:
break
return image_vis, gt_mask, pr_mask
PAGE_TITLE = "Polyp Segmentation"
SUBHEADER = "Polyps are growths in the colon which can be precursors to colon cancer and are of particular interest \
when performing colonoscopies. Improving automatic detection of polyps helps doctors analyze thousands of frames from colonoscopy videos \
and leads to more reliable and efficient prevention of colon cancer. This web app uses a CNN trained on colonoscopy images from the Kvasir dataset."
def file_selector(folder_path='.'):
filenames = os.listdir(folder_path)
selected_filename = st.selectbox('Select a file', filenames)
return os.path.join(folder_path, selected_filename)
def file_selector_ui():
folder_path = './test/test/images'
filename = file_selector(folder_path=folder_path)
printname = list(filename)
printname[filename.rfind('\\')] = '/'
st.write('You selected`%s`' % ''.join(printname))
return filename
def file_upload(folder_path='.'):
filenames = os.listdir(folder_path)
folder_path = './test/test/images'
uploaded_file = st.file_uploader("Choose a file")
filename = os.path.join(folder_path, uploaded_file.name)
printname = list(filename)
printname[filename.rfind('\\')] = '/'
st.write('You selected`%s`' % ''.join(printname))
return filename
def main():
st.set_page_config(page_title=PAGE_TITLE, layout="wide")
st.title(PAGE_TITLE)
st.markdown(SUBHEADER)
image_path = file_selector_ui()
# image_path = file_upload()
image_path = os.path.abspath(image_path)
to_infer = image_path[image_path.rfind("\\") + 1:]
if os.path.isfile(image_path) is True:
_, file_extension = os.path.splitext(image_path)
if file_extension == ".jpg":
image_vis, gt_mask, pr_mask = model_infer(to_infer)
visualize(
image=image_vis,
#ground_truth_mask=gt_mask,
predicted_mask=pr_mask
)
if __name__ == "__main__":
main() |