Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
import torch | |
import albumentations as albu | |
from torch.utils.data import DataLoader | |
from torch.utils.data import Dataset as BaseDataset | |
from catalyst.dl import SupervisedRunner | |
import segmentation_models_pytorch as smp | |
from io import StringIO | |
# streamlit run c:/Users/ronni/Downloads/polyp_seg_web_app/app.py | |
x_test_dir = 'test/test/images' | |
y_test_dir = 'test/test/masks' | |
ENCODER = 'mobilenet_v2' | |
ENCODER_WEIGHTS = 'imagenet' | |
CLASSES = ['polyp', 'background'] | |
ACTIVATION = 'sigmoid' | |
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS) | |
def visualize(**images): | |
"""Plot images in one row.""" | |
n = len(images) | |
plt.figure(figsize=(16, 5)) | |
for i, (name, image) in enumerate(images.items()): | |
plt.subplot(1, n, i + 1) | |
plt.xticks([]) | |
plt.yticks([]) | |
plt.title(' '.join(name.split('_')).title()) | |
plt.imshow(image) | |
plt.savefig('x',dpi=400) | |
st.image('x.png') | |
def get_training_augmentation(): | |
train_transform = [ | |
albu.HorizontalFlip(p=0.5), | |
albu.ShiftScaleRotate(scale_limit=0.5, rotate_limit=0, shift_limit=0.1, p=1, border_mode=0), | |
albu.Resize(576, 736, always_apply=True, p=1), | |
albu.IAAAdditiveGaussianNoise(p=0.2), | |
albu.IAAPerspective(p=0.5), | |
albu.OneOf( | |
[ | |
albu.CLAHE(p=1), | |
albu.RandomBrightness(p=1), | |
albu.RandomGamma(p=1), | |
], | |
p=0.9, | |
), | |
albu.OneOf( | |
[ | |
albu.IAASharpen(p=1), | |
albu.Blur(blur_limit=3, p=1), | |
albu.MotionBlur(blur_limit=3, p=1), | |
], | |
p=0.9, | |
), | |
albu.OneOf( | |
[ | |
albu.RandomContrast(p=1), | |
albu.HueSaturationValue(p=1), | |
], | |
p=0.9, | |
), | |
] | |
return albu.Compose(train_transform) | |
def get_validation_augmentation(): | |
"""Add paddings to make image shape divisible by 32""" | |
test_transform = [ | |
albu.Resize(576, 736) | |
] | |
return albu.Compose(test_transform) | |
def to_tensor(x, **kwargs): | |
return x.transpose(2, 0, 1).astype('float32') | |
def get_preprocessing(preprocessing_fn): | |
"""Construct preprocessing transform | |
Args: | |
preprocessing_fn (callbale): data normalization function | |
(can be specific for each pretrained neural network) | |
Return: | |
transform: albumentations.Compose | |
""" | |
_transform = [ | |
albu.Lambda(image=preprocessing_fn), | |
albu.Lambda(image=to_tensor, mask=to_tensor), | |
] | |
return albu.Compose(_transform) | |
class Dataset(BaseDataset): | |
"""Args: | |
images_dir (str): path to images folder | |
masks_dir (str): path to segmentation masks folder | |
class_values (list): values of classes to extract from segmentation mask | |
augmentation (albumentations.Compose): data transfromation pipeline | |
(e.g. flip, scale, etc.) | |
preprocessing (albumentations.Compose): data preprocessing | |
(e.g. noralization, shape manipulation, etc.) | |
""" | |
CLASSES = ['polyp', 'background'] | |
def __init__( | |
self, | |
images_dir, | |
masks_dir, | |
classes=None, | |
augmentation=None, | |
preprocessing=None, | |
single_file=False | |
): | |
if single_file: | |
self.ids = images_dir | |
self.images_fps = os.path.join('test/test/images', self.ids) | |
self.masks_fps = os.path.join('test/test/masks', self.ids) | |
else: | |
self.ids = os.listdir(images_dir) | |
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids] | |
self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids] | |
# convert str names to class values on masks | |
self.class_values = [self.CLASSES.index(cls.lower()) for cls in classes] | |
self.augmentation = augmentation | |
self.preprocessing = preprocessing | |
def __getitem__(self, i): | |
# read data | |
image = cv2.imread(self.images_fps) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
mask = cv2.imread(self.masks_fps, 0) | |
mask[np.where(mask < 8)] = 0 | |
mask[np.where(mask > 8)] = 255 | |
# extract certain classes from mask (e.g. polyp) | |
masks = [(mask == v) for v in self.class_values] | |
mask = np.stack(masks, axis=-1).astype('float') | |
# apply augmentations | |
if self.augmentation: | |
sample = self.augmentation(image=image, mask=mask) | |
image, mask = sample['image'], sample['mask'] | |
# apply preprocessing | |
if self.preprocessing: | |
sample = self.preprocessing(image=image, mask=mask) | |
image, mask = sample['image'], sample['mask'] | |
return image, mask | |
def __len__(self): | |
return len(self.ids) | |
def model_infer(img_name): | |
model = smp.UnetPlusPlus( | |
encoder_name=ENCODER, | |
encoder_weights=ENCODER_WEIGHTS, | |
encoder_depth=5, | |
decoder_channels=(256, 128, 64, 32, 16), | |
classes=len(CLASSES), | |
activation=ACTIVATION, | |
decoder_attention_type=None, | |
) | |
model.load_state_dict(torch.load('best.pth', map_location=torch.device('cpu'))['model_state_dict']) | |
model.eval() | |
test_dataset = Dataset( | |
img_name, | |
img_name, | |
augmentation=get_validation_augmentation(), | |
preprocessing=get_preprocessing(preprocessing_fn), | |
classes=CLASSES, | |
single_file=True | |
) | |
test_dataloader = DataLoader(test_dataset) | |
loaders = {"infer": test_dataloader} | |
runner = SupervisedRunner() | |
logits = [] | |
f = 0 | |
for prediction in runner.predict_loader(model=model, loader=loaders['infer'],cpu=True): | |
if f < 3: | |
logits.append(prediction['logits']) | |
f = f + 1 | |
else: | |
break | |
threshold = 0.5 | |
break_at = 1 | |
for i, (input, output) in enumerate(zip( | |
test_dataset, logits)): | |
image, mask = input | |
image_vis = image.transpose(1, 2, 0) | |
gt_mask = mask[0].astype('uint8') | |
pr_mask = (output[0].numpy() > threshold).astype('uint8')[0] | |
i = i + 1 | |
if i >= break_at: | |
break | |
return image_vis, gt_mask, pr_mask | |
PAGE_TITLE = "Polyp Segmentation" | |
SUBHEADER = "Polyps are growths in the colon which can be precursors to colon cancer and are of particular interest \ | |
when performing colonoscopies. Improving automatic detection of polyps helps doctors analyze thousands of frames from colonoscopy videos \ | |
and leads to more reliable and efficient prevention of colon cancer. This web app uses a CNN trained on colonoscopy images from the Kvasir dataset." | |
def file_selector(folder_path='.'): | |
filenames = os.listdir(folder_path) | |
selected_filename = st.selectbox('Select a file', filenames) | |
return os.path.join(folder_path, selected_filename) | |
def file_selector_ui(): | |
folder_path = './test/test/images' | |
filename = file_selector(folder_path=folder_path) | |
printname = list(filename) | |
printname[filename.rfind('\\')] = '/' | |
st.write('You selected`%s`' % ''.join(printname)) | |
return filename | |
def file_upload(folder_path='.'): | |
filenames = os.listdir(folder_path) | |
folder_path = './test/test/images' | |
uploaded_file = st.file_uploader("Choose a file") | |
filename = os.path.join(folder_path, uploaded_file.name) | |
printname = list(filename) | |
printname[filename.rfind('\\')] = '/' | |
st.write('You selected`%s`' % ''.join(printname)) | |
return filename | |
def main(): | |
st.set_page_config(page_title=PAGE_TITLE, layout="wide") | |
st.title(PAGE_TITLE) | |
st.markdown(SUBHEADER) | |
image_path = file_selector_ui() | |
# image_path = file_upload() | |
image_path = os.path.abspath(image_path) | |
to_infer = image_path[image_path.rfind("\\") + 1:] | |
if os.path.isfile(image_path) is True: | |
_, file_extension = os.path.splitext(image_path) | |
if file_extension == ".jpg": | |
image_vis, gt_mask, pr_mask = model_infer(to_infer) | |
visualize( | |
image=image_vis, | |
#ground_truth_mask=gt_mask, | |
predicted_mask=pr_mask | |
) | |
if __name__ == "__main__": | |
main() |