rony2510's picture
Duplicate from nihalbaig/BD-Vehicle-Detection
c11c8a6
import gradio as gr
import torch
import yolov7
# Images
#torch.hub.download_url_to_file('https://raw.githubusercontent.com/nihalbaig0/BD-Vehicle-Detection/main/images/bondor_to_kodomtoli.jpg', 'bondor_to_kodomtoli.jpg')
#torch.hub.download_url_to_file('https://raw.githubusercontent.com/nihalbaig0/BD-Vehicle-Detection/main/images/lamabazar_to_versitygate.jpg', 'lamabazar_to_versitygate.jpg')
def yolov7_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv7 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
model.conf = conf_threshold
model.iou = iou_threshold
results = model([image], size=image_size)
return results.render()[0]
inputs = [
gr.inputs.Image(type="pil", label="Input Image"),
gr.inputs.Dropdown(
choices=[
"nihalbaig/yolov7",
],
default="nihalbaig0/yolov7",
label="Model",
),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "Project-350: BD Vehicle Detection for Autonomous Vehicle"
#examples = [['bondor_to_kodomtoli.jpg', 'nihalbaig0/yolov7', 640, 0.25, 0.45], ['lamabazar_to_versitygate.jpg', 'nihalbaig0/yolov7', 640, 0.25, 0.45]]
demo_app = gr.Interface(
fn=yolov7_inference,
inputs=inputs,
outputs=outputs,
title=title,
#examples=examples,
cache_examples=True,
theme='darkhuggingface',
)
demo_app.launch(debug=True, enable_queue=True)