|
from huggingface_hub import InferenceClient
|
|
import nltk
|
|
import re
|
|
import requests
|
|
|
|
nltk.download('punkt')
|
|
nltk.download('punkt_tab')
|
|
nltk.download('averaged_perceptron_tagger')
|
|
|
|
|
|
client = InferenceClient(api_key="xyz")
|
|
|
|
|
|
def extract_product_info(text):
|
|
|
|
result = {"brand": None, "model": None, "description": None, "price": None}
|
|
|
|
|
|
price_match = re.search(r'\$\s?\d{1,3}(?:,\d{3})*(?:\.\d{2})?', text)
|
|
if price_match:
|
|
result["price"] = price_match.group().replace("$", "").replace(",", "").strip()
|
|
|
|
text = text.replace(price_match.group(), "").strip()
|
|
|
|
|
|
tokens = nltk.word_tokenize(text)
|
|
pos_tags = nltk.pos_tag(tokens)
|
|
|
|
|
|
brand_parts = []
|
|
model_parts = []
|
|
description_parts = []
|
|
|
|
|
|
for word, tag in pos_tags:
|
|
if tag == 'NNP' or re.match(r'[A-Za-z0-9-]+', word):
|
|
if len(brand_parts) == 0:
|
|
brand_parts.append(word)
|
|
else:
|
|
model_parts.append(word)
|
|
else:
|
|
description_parts.append(word)
|
|
|
|
|
|
if brand_parts:
|
|
result["brand"] = " ".join(brand_parts)
|
|
if model_parts:
|
|
result["model"] = " ".join(model_parts)
|
|
|
|
|
|
result["description"] = " ".join(description_parts)
|
|
|
|
return result
|
|
|
|
|
|
|
|
def extract_info(text):
|
|
API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-large"
|
|
headers = {"Authorization": "Bearer hf_xyz"}
|
|
payload = {"inputs": f"From the given text, extract brand name, model number, description about it, and its average price in today's market. Give me back a python dictionary with keys as brand_name, model_number, desc, price. The text is {text}.",}
|
|
response = requests.post(API_URL, headers=headers, json=payload)
|
|
print('GOOGLEE LLM OUTPUTTTTTTT\n\n',response )
|
|
output = response.json()
|
|
print(output)
|
|
|
|
|
|
|
|
def get_name(url, object):
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": f"Is this a {object}?. Can you guess what it is and give me the closest brand it resembles to? or a model number? And give me its average price in today's market in USD. In output, give me its normal name, model name, model number and price. separated by commas. No description is needed."
|
|
},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": url
|
|
}
|
|
}
|
|
]
|
|
}
|
|
]
|
|
|
|
completion = client.chat.completions.create(
|
|
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
|
|
messages=messages,
|
|
max_tokens=500
|
|
)
|
|
|
|
|
|
print(f'\n\nNow output of LLM:\n')
|
|
llm_result = completion.choices[0].message['content']
|
|
print(llm_result)
|
|
print(f'\n\nThat is the output')
|
|
|
|
result = extract_product_info(llm_result)
|
|
print(f'\n\nResult brand and price:{result}')
|
|
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
|