from huggingface_hub import InferenceClient import nltk import re import requests import os api_key = os.getenv("HF_KEY") nltk.download('punkt') nltk.download('punkt_tab') nltk.download('averaged_perceptron_tagger') nltk.download('averaged_perceptron_tagger_eng') client = InferenceClient(api_key=api_key) ''' def extract_product_info(text): print(f'Extract function called!') # Initialize result dictionary result = {"brand": None, "model": None, "description": None, "price": None} # Extract price separately using regex (to avoid confusion with brand name) price_match = re.search(r'\$\s?\d{1,3}(?:,\d{3})*(?:\.\d{2})?', text) print(f'price_match:{price_match}') if price_match: result["price"] = price_match.group().replace("$", "").replace(",", "").strip() # Remove the price part from the text to prevent it from being included in the brand/model extraction text = text.replace(price_match.group(), "").strip() print(f'text:{text}') # Tokenize the remaining text and tag parts of speech tokens = nltk.word_tokenize(text) print(f'tokens are:{tokens}') pos_tags = nltk.pos_tag(tokens) print(tokens, pos_tags) # Extract brand and model (Proper Nouns + Alphanumeric patterns) brand_parts = [] model_parts = [] description_parts = [] # First part: Extract brand and model info for word, tag in pos_tags: if tag == 'NNP' or re.match(r'[A-Za-z0-9-]+', word): if len(brand_parts) == 0: # Assume the first proper noun is the brand brand_parts.append(word) else: # Model number tends to follow the brand model_parts.append(word) else: description_parts.append(word) # Assign brand and model to result dictionary if brand_parts: result["brand"] = " ".join(brand_parts) if model_parts: result["model"] = " ".join(model_parts) # Combine the remaining parts as description result["description"] = " ".join(description_parts) print(f'extract function returned:\n{result}') return result ''' def extract_product_info(text): print(f"Extract function called with input: {text}") # Initialize result dictionary result = {"brand": None, "model": None, "description": None, "price": None} try: # Extract price using regex price_match = re.search(r'\$\s?\d{1,3}(?:,\d{3})*(?:\.\d{2})?', text) print(f"Price match: {price_match}") if price_match: result["price"] = price_match.group().replace("$", "").replace(",", "").strip() # Remove the price part from the text to prevent interference text = text.replace(price_match.group(), "").strip() print(f"Text after removing price: {text}") # Tokenize the remaining text try: tokens = nltk.word_tokenize(text) print(f"Tokens: {tokens}") except Exception as e: print(f"Error during tokenization: {e}") # Fall back to a simple split if tokenization fails tokens = text.split() print(f"Fallback tokens: {tokens}") # POS tagging try: pos_tags = nltk.pos_tag(tokens) print(f"POS Tags: {pos_tags}") except Exception as e: print(f"Error during POS tagging: {e}") # If POS tagging fails, create dummy tags pos_tags = [(word, "NN") for word in tokens] print(f"Fallback POS Tags: {pos_tags}") # Extract brand, model, and description brand_parts = [] model_parts = [] description_parts = [] for word, tag in pos_tags: if tag == 'NNP' or re.match(r'[A-Za-z0-9-]+', word): if len(brand_parts) == 0: # Assume the first proper noun is the brand brand_parts.append(word) else: # Model number tends to follow the brand model_parts.append(word) else: description_parts.append(word) # Assign values to the result dictionary if brand_parts: result["brand"] = " ".join(brand_parts) if model_parts: result["model"] = " ".join(model_parts) if description_parts: result["description"] = " ".join(description_parts) print(f"Extract function returned: {result}") except Exception as e: print(f"Unexpected error: {e}") # Return a fallback result in case of a critical error result["description"] = text print(f"Fallback result: {result}") return result def extract_info(text): API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-large" headers = {"Authorization": f"Bearer {api_key}"} payload = {"inputs": f"From the given text, extract brand name, model number, description about it, and its average price in today's market. Give me back a python dictionary with keys as brand_name, model_number, desc, price. The text is {text}.",} response = requests.post(API_URL, headers=headers, json=payload) print('GOOGLEE LLM OUTPUTTTTTTT\n\n',response ) output = response.json() print(output) def get_name(url, object): messages = [ { "role": "user", "content": [ { "type": "text", "text": f"Is this a {object}?. Can you guess what it is and give me the closest brand it resembles to? or a model number? And give me its average price in today's market in USD. In output, give me its normal name, model name, model number and price. separated by commas. No description is needed." }, { "type": "image_url", "image_url": { "url": url } } ] } ] completion = client.chat.completions.create( model="meta-llama/Llama-3.2-11B-Vision-Instruct", messages=messages, max_tokens=500 ) print(f'\n\nNow output of LLM:\n') llm_result = completion.choices[0].message['content'] print(llm_result) # print(f'\n\nThat is the output') print(f"Extracting from the output now, function calling") result = extract_product_info(llm_result) print(f'\n\nResult brand and price:{result}') print(f'\n\nThat is the output') # result2 = extract_info(llm_result) # print(f'\n\nFrom Google llm:{result2}') return result # url = "https://i.ibb.co/mNYvqDL/crop_39.jpg" # object="fridge" # get_name(url, object)