import torch from pathlib import Path from transformers import CLIPProcessor, CLIPModel from PIL import Image, ImageDraw import pytesseract import requests import os from llm import inference, upload_image import re cropped_images_dir = "cropped_images" os.makedirs(cropped_images_dir, exist_ok=True) # Load YOLO model class YOLOModel: def __init__(self, model_path="yolov5s.pt"): """ Initialize the YOLO model. Downloads YOLOv5 pretrained model if not available. """ torch.hub._validate_not_a_forked_repo=lambda a,b,c: True self.model = torch.hub.load("ultralytics/yolov5", "custom", path=model_path, force_reload=True) # self.model2 = YOLOv10.from_pretrained("Ultralytics/Yolov8") # print(f'YOLO Model:\n\n{self.model}') # self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") # # print(f'CLIP Model:\n\n{self.clip_model}') # self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") # self.category_brands = { # "electronics": ["Samsung", "Apple", "Sony", "LG", "Panasonic"], # "furniture": ["Ikea", "Ashley", "La-Z-Boy", "Wayfair", "West Elm"], # "appliances": ["Whirlpool", "GE", "Samsung", "LG", "Bosch"], # "vehicles": ["Tesla", "Toyota", "Ford", "Honda", "Chevrolet"], # "chair": ["Ikea", "Ashley", "Wayfair", "La-Z-Boy", "Herman Miller"], # "microwave": ["Samsung", "Panasonic", "Sharp", "LG", "Whirlpool"], # "table": ["Ikea", "Wayfair", "Ashley", "CB2", "West Elm"], # "oven": ["Whirlpool", "GE", "Samsung", "Bosch", "LG"], # "potted plant": ["The Sill", "PlantVine", "Lowe's", "Home Depot", "UrbanStems"], # "couch": ["Ikea", "Ashley", "Wayfair", "La-Z-Boy", "CushionCo"], # "cow": ["Angus", "Hereford", "Jersey", "Holstein", "Charolais"], # "bed": ["Tempur-Pedic", "Ikea", "Sealy", "Serta", "Sleep Number"], # "tv": ["Samsung", "LG", "Sony", "Vizio", "TCL"], # "bin": ["Rubbermaid", "Sterilite", "Hefty", "Glad", "Simplehuman"], # "refrigerator": ["Whirlpool", "GE", "Samsung", "LG", "Bosch"], # "laptop": ["Dell", "HP", "Apple", "Lenovo", "Asus"], # "smartphone": ["Apple", "Samsung", "Google", "OnePlus", "Huawei"], # "camera": ["Canon", "Nikon", "Sony", "Fujifilm", "Panasonic"], # "toaster": ["Breville", "Cuisinart", "Black+Decker", "Hamilton Beach", "Oster"], # "fan": ["Dyson", "Honeywell", "Lasko", "Vornado", "Bionaire"], # "vacuum cleaner": ["Dyson", "Shark", "Roomba", "Hoover", "Bissell"] # } def predict_clip(self, image, brand_names): """ Predict the most probable brand using CLIP. """ inputs = self.clip_processor( text=brand_names, images=image, return_tensors="pt", padding=True ) # print(f'Inputs to clip processor:{inputs}') outputs = self.clip_model(**inputs) logits_per_image = outputs.logits_per_image probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities best_idx = probs.argmax().item() return brand_names[best_idx], probs[0, best_idx].item() def predict_text(self, image): grayscale = image.convert('L') text = pytesseract.image_to_string(grayscale) return text.strip() def predict(self, image_path): """ Run YOLO inference on an image. :param image_path: Path to the input image :return: List of predictions with labels and bounding boxes """ results = self.model(image_path) image = Image.open(image_path).convert("RGB") draw = ImageDraw.Draw(image) predictions = results.pandas().xyxy[0] # Get predictions as pandas DataFrame print(f'YOLO predictions:\n\n{predictions}') output = [] for idx, row in predictions.iterrows(): category = row['name'] confidence = row['confidence'] bbox = [row["xmin"], row["ymin"], row["xmax"], row["ymax"]] # Crop the detected region cropped_image = image.crop((bbox[0], bbox[1], bbox[2], bbox[3])) cropped_image_path = os.path.join(cropped_images_dir, f"crop_{idx}.jpg") cropped_image.save(cropped_image_path, "JPEG") # uploading to cloud for getting URL to pass into LLM print(f'Uploading now to image url') image_url = upload_image.upload_image_to_imgbb(cropped_image_path) print(f'Image URL received as{image_url}') # inferencing llm for possible brands result_llms = inference.get_name(image_url, category) # possible_brands_llm = re.findall(r"-\s*(.+)", possible_brands_mixed) # if len(possible_brands_llm)>0: # predicted_brand, clip_confidence = self.predict_clip(cropped_image, possible_brands_llm) # else: # predicted_brand, clip_confidence = "Unknown", 0.0 ''' # Match category to possible brands if category in self.category_brands: possible_brands = self.category_brands[category] print(f'Predicting with CLIP:\n\n') predicted_brand, clip_confidence = self.predict_clip(cropped_image, possible_brands) else: predicted_brand, clip_confidence = "Unknown", 0.0 ''' detected_text = self.predict_text(cropped_image) print(f'Details:{detected_text}') print(f'Predicted brand: {result_llms["model"]}') # Draw bounding box and label on the image draw.rectangle(bbox, outline="red", width=3) draw.text( (bbox[0], bbox[1] - 10), f'{result_llms["brand"]})', fill="red" ) # Append result output.append({ "category": category, "bbox": bbox, "confidence": confidence, "category_llm":result_llms["brand"], "predicted_brand": result_llms["model"], # "clip_confidence": clip_confidence, "price":result_llms["price"], "details":result_llms["description"], "detected_text":detected_text, }) valid_indices = set(range(len(predictions))) # Iterate over all files in the directory for filename in os.listdir(cropped_images_dir): # Check if the filename matches the pattern for cropped images if filename.startswith("crop_") and filename.endswith(".jpg"): # Extract the index from the filename try: file_idx = int(filename.split("_")[1].split(".")[0]) if file_idx not in valid_indices: # Delete the file if its index is not valid file_path = os.path.join(cropped_images_dir, filename) os.remove(file_path) print(f"Deleted excess file: {filename}") except ValueError: # Skip files that don't match the pattern continue return output