File size: 11,073 Bytes
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import time

import torch
from torch import nn
import gpytorch

from .prior import Batch
from .utils import get_batch_to_dataloader
from ..utils import default_device


# We will use the simplest form of GP model, exact inference
class ExactGPModel(gpytorch.models.ExactGP):
    def __init__(self, train_x, train_y, likelihood):
        super(ExactGPModel, self).__init__(train_x, train_y, likelihood)
        self.mean_module = gpytorch.means.ConstantMean()
        self.covar_module = gpytorch.kernels.ScaleKernel(gpytorch.kernels.RBFKernel())

    def forward(self, x):
        mean_x = self.mean_module(x)
        covar_x = self.covar_module(x)
        return gpytorch.distributions.MultivariateNormal(mean_x, covar_x)


def get_model(x, y, hyperparameters):
    likelihood = gpytorch.likelihoods.GaussianLikelihood(noise_constraint=gpytorch.constraints.GreaterThan(1.e-9))
    model = ExactGPModel(x, y, likelihood)
    model.likelihood.noise = torch.ones_like(model.likelihood.noise) * hyperparameters["noise"]
    model.covar_module.outputscale = torch.ones_like(model.covar_module.outputscale) * hyperparameters["outputscale"]
    model.covar_module.base_kernel.lengthscale = torch.ones_like(model.covar_module.base_kernel.lengthscale) * \
                                                 hyperparameters["lengthscale"]
    return model, likelihood


@torch.no_grad()
def get_batch(batch_size, seq_len, num_features, device=default_device, hyperparameters=None,
              equidistant_x=False, fix_x=None, **kwargs):
    if isinstance(hyperparameters, (tuple, list)):
        hyperparameters = {"noise": hyperparameters[0]
            , "outputscale": hyperparameters[1]
            , "lengthscale": hyperparameters[2]
            , "is_binary_classification": hyperparameters[3]
            # , "num_features_used": hyperparameters[4]
            , "normalize_by_used_features": hyperparameters[5]
            , "order_y": hyperparameters[6]
            , "sampling": hyperparameters[7]
                           }
    elif hyperparameters is None:
        hyperparameters = {"noise": .1, "outputscale": .1, "lengthscale": .1}

    if 'verbose' in hyperparameters and hyperparameters['verbose']:
        print({"noise": hyperparameters['noise'], "outputscale": hyperparameters['outputscale']
                  , "lengthscale": hyperparameters['lengthscale'], 'batch_size': batch_size, 'sampling': hyperparameters['sampling']})
    observation_noise = hyperparameters.get("observation_noise", True)

    # hyperparameters = {k: hyperparameters[k]() if callable(hyperparameters[k]) else hyperparameters[k] for k in
    #      hyperparameters.keys()}
    assert not (equidistant_x and (fix_x is not None))

    with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations', (True, True, True))):
        if equidistant_x:
            assert num_features == 1
            x = torch.linspace(0, 1., seq_len).unsqueeze(0).repeat(batch_size, 1).unsqueeze(-1)
        elif fix_x is not None:
            assert fix_x.shape == (seq_len, num_features)
            x = fix_x.unsqueeze(0).repeat(batch_size, 1, 1).to(device)
        else:
            if hyperparameters.get('sampling','uniform') == 'uniform':
                x = torch.rand(batch_size, seq_len, num_features, device=device)
            elif hyperparameters.get('sampling','uniform') == 'normal':
                x = torch.randn(batch_size, seq_len, num_features, device=device)
            elif isinstance(hyperparameters['sampling'], str) and hyperparameters['sampling'].startswith('uniform_'):
                left_border, right_border = [float(v) for v in hyperparameters['sampling'][len('uniform_'):].split('_')]
                x = torch.rand(batch_size, seq_len, num_features, device=device) * (right_border - left_border) + left_border
            elif isinstance(hyperparameters['sampling'], str) and hyperparameters['sampling'].startswith('clustered_'):
                dist_std, local_dist_std, base_likelihood = [float(v) for v in hyperparameters['sampling'][len('clustered_'):].split('_')]

                def first_sample(dist):
                    return dist().unsqueeze(0)

                def append_sample(samples, dist, local_dist, base_likelihood):
                    if samples is None:
                        return first_sample(dist)
                    num_samples, batch_size, num_features = samples.shape
                    use_base = torch.rand(batch_size) < base_likelihood
                    sample_mean = torch.where(use_base[:, None].repeat(1, num_features),
                                              torch.zeros(batch_size, num_features),
                                              samples[torch.randint(num_samples, (batch_size,)),
                                              torch.arange(batch_size), :])
                    return torch.cat((samples, (local_dist() + sample_mean).unsqueeze(0)), 0)

                def create_sample(num_samples, dist, local_dist, base_likelihood):
                    samples = None
                    for i in range(num_samples):
                        samples = append_sample(samples, dist, local_dist, base_likelihood)

                    return samples[torch.randperm(num_samples)]

                x = create_sample(seq_len, lambda: torch.randn(batch_size, num_features)*dist_std,
                                  lambda: torch.rand(batch_size, num_features)*local_dist_std, base_likelihood)\
                    .transpose(0,1).to(device)
            elif isinstance(hyperparameters['sampling'], str) and hyperparameters['sampling'].startswith(
                    'gmix_'):
                blob_width, n_centers_max, stddev = [float(v) for v in
                                                             hyperparameters['sampling'][len('gmix_'):].split('_')]
                n_centers_max = int(n_centers_max)
                def get_x(batch_size, n_samples, num_features, blob_width, n_centers_max, stddev, device):
                    n_centers = torch.randint(1, n_centers_max, tuple(), device=device)
                    centers = torch.rand((batch_size, n_centers, num_features), device=device) * blob_width - blob_width / 2
                    center_assignments = torch.randint(n_centers, (batch_size, n_samples,), device=device)
                    noise = torch.randn((batch_size, n_samples, num_features), device=device) * stddev
                    return centers.gather(1, center_assignments[..., None].repeat(1, 1,
                                                                                  num_features)) + noise  # centers: (b, m, f), ass: (b,n)
                x = get_x(batch_size, seq_len, num_features, blob_width, n_centers_max, stddev, device)
            elif isinstance(hyperparameters['sampling'], str) and hyperparameters['sampling'].startswith(
                    'grep_'):
                stddev, = [float(v) for v in hyperparameters['sampling'][len('grep_'):].split('_')]
                x = torch.randn(batch_size, seq_len//2, num_features, device=device) * stddev
                x = x.repeat(1,2,1)
                x = x[:,torch.randperm(x.shape[1]),:]
            else:
                x = torch.randn(batch_size, seq_len, num_features, device=device) * hyperparameters.get('sampling', 1.)
        model, likelihood = get_model(x, torch.Tensor(), hyperparameters)
        model.to(device)
        # trained_model = ExactGPModel(train_x, train_y, likelihood).cuda()
        # trained_model.eval()
        successful_sample = False
        while not successful_sample:
            try:
                with gpytorch.settings.prior_mode(True):
                    model, likelihood = get_model(x, torch.Tensor(), hyperparameters)
                    model.to(device)

                    d = model(x)
                    if observation_noise:
                        target_sample = sample = likelihood(d).sample().transpose(0, 1)
                    else:
                        target_sample = d.sample().transpose(0, 1)  # this will be the target for the loss
                        sample = likelihood(target_sample).sample()  # this will be the input to the Transformer
                    successful_sample = True
            except RuntimeError: # This can happen when torch.linalg.eigh fails. Restart with new init resolves this.
                print('GP Sampling unsuccessful, retrying.. ')
                print(x)
                print(hyperparameters)

    if bool(torch.any(torch.isnan(x)).detach().cpu().numpy()):
        print({"noise": hyperparameters['noise'], "outputscale": hyperparameters['outputscale']
                  , "lengthscale": hyperparameters['lengthscale'], 'batch_size': batch_size})

    if hyperparameters.get('improvement_classification', False):
        single_eval_pos = kwargs['single_eval_pos']
        max_so_far = sample[:single_eval_pos].max(0).values
        sample[single_eval_pos:] = (sample > max_so_far).float()[single_eval_pos:]

    return Batch(x=x.transpose(0, 1), y=sample, target_y=target_sample)

DataLoader = get_batch_to_dataloader(get_batch)

def get_model_on_device(x,y,hyperparameters,device):
    model, likelihood = get_model(x, y, hyperparameters)
    model.to(device)
    return model, likelihood


@torch.no_grad()
def evaluate(x, y, y_non_noisy, use_mse=False, hyperparameters={}, get_model_on_device=get_model_on_device, device=default_device, step_size=1, start_pos=0):
    start_time = time.time()
    losses_after_t = [.0] if start_pos == 0 else []
    all_losses_after_t = []

    with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))), gpytorch.settings.fast_pred_var(False):
        for t in range(max(start_pos, 1), len(x), step_size):
            loss_sum = 0.
            model, likelihood = get_model_on_device(x[:t].transpose(0, 1), y[:t].transpose(0, 1), hyperparameters, device)


            model.eval()
            # print([t.shape for t in model.train_inputs])
            # print(x[:t].transpose(0,1).shape, x[t].unsqueeze(1).shape, y[:t].transpose(0,1).shape)
            f = model(x[t].unsqueeze(1))
            l = likelihood(f)
            means = l.mean.squeeze()
            varis = l.covariance_matrix.squeeze()
            # print(l.variance.squeeze(), l.mean.squeeze(), y[t])

            assert len(means.shape) == len(varis.shape) == 1
            assert len(means) == len(varis) == x.shape[1]

            if use_mse:
                c = nn.MSELoss(reduction='none')
                ls = c(means, y[t])
            else:
                ls = -l.log_prob(y[t].unsqueeze(1))

            losses_after_t.append(ls.mean())
            all_losses_after_t.append(ls.flatten())
        return torch.stack(all_losses_after_t).to('cpu'), torch.tensor(losses_after_t).to('cpu'), time.time() - start_time

if __name__ == '__main__':
    hps = (.1,.1,.1)
    for redo_idx in range(1):
        print(
            evaluate(*get_batch(1000, 10, hyperparameters=hps, num_features=10), use_mse=False, hyperparameters=hps))