Spaces:
Sleeping
Sleeping
File size: 23,036 Bytes
165ee00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import time
import functools
import random
import math
import traceback
import warnings
import numpy as np
import torch
from torch import nn
import gpytorch
import botorch
from botorch.models import SingleTaskGP
from botorch.models.gp_regression import MIN_INFERRED_NOISE_LEVEL
from botorch.fit import fit_gpytorch_model
from gpytorch.mlls import ExactMarginalLogLikelihood
from gpytorch.likelihoods import GaussianLikelihood
from gpytorch.priors.torch_priors import GammaPrior, UniformPrior, LogNormalPrior
from gpytorch.means import ZeroMean
from botorch.models.transforms.input import *
from gpytorch.constraints import GreaterThan
from . import utils
from ..utils import default_device, to_tensor
from .prior import Batch
from .utils import get_batch_to_dataloader
class Warp(gpytorch.Module):
r"""A transform that uses learned input warping functions.
Each specified input dimension is warped using the CDF of a
Kumaraswamy distribution. Typically, MAP estimates of the
parameters of the Kumaraswamy distribution, for each input
dimension, are learned jointly with the GP hyperparameters.
for each output in batched multi-output and multi-task models.
For now, ModelListGPs should be used to learn independent warping
functions for each output.
"""
_min_concentration_level = 1e-4
def __init__(
self,
indices: List[int],
transform_on_train: bool = True,
transform_on_eval: bool = True,
transform_on_fantasize: bool = True,
reverse: bool = False,
eps: float = 1e-7,
concentration1_prior: Optional[Prior] = None,
concentration0_prior: Optional[Prior] = None,
batch_shape: Optional[torch.Size] = None,
) -> None:
r"""Initialize transform.
Args:
indices: The indices of the inputs to warp.
transform_on_train: A boolean indicating whether to apply the
transforms in train() mode. Default: True.
transform_on_eval: A boolean indicating whether to apply the
transform in eval() mode. Default: True.
transform_on_fantasize: A boolean indicating whether to apply the
transform when called from within a `fantasize` call. Default: True.
reverse: A boolean indicating whether the forward pass should untransform
the inputs.
eps: A small value used to clip values to be in the interval (0, 1).
concentration1_prior: A prior distribution on the concentration1 parameter
of the Kumaraswamy distribution.
concentration0_prior: A prior distribution on the concentration0 parameter
of the Kumaraswamy distribution.
batch_shape: The batch shape.
"""
super().__init__()
self.register_buffer("indices", torch.tensor(indices, dtype=torch.long))
self.transform_on_train = transform_on_train
self.transform_on_eval = transform_on_eval
self.transform_on_fantasize = transform_on_fantasize
self.reverse = reverse
self.batch_shape = batch_shape or torch.Size([])
self._X_min = eps
self._X_range = 1 - 2 * eps
if len(self.batch_shape) > 0:
# Note: this follows the gpytorch shape convention for lengthscales
# There is ongoing discussion about the extra `1`.
# https://github.com/cornellius-gp/gpytorch/issues/1317
batch_shape = self.batch_shape + torch.Size([1])
else:
batch_shape = self.batch_shape
for i in (0, 1):
p_name = f"concentration{i}"
self.register_parameter(
p_name,
nn.Parameter(torch.full(batch_shape + self.indices.shape, 1.0)),
)
if concentration0_prior is not None:
def closure(m):
#print(m.concentration0)
return m.concentration0
self.register_prior(
"concentration0_prior",
concentration0_prior,
closure,
lambda m, v: m._set_concentration(i=0, value=v),
)
if concentration1_prior is not None:
def closure(m):
#print(m.concentration1)
return m.concentration1
self.register_prior(
"concentration1_prior",
concentration1_prior,
closure,
lambda m, v: m._set_concentration(i=1, value=v),
)
for i in (0, 1):
p_name = f"concentration{i}"
constraint = GreaterThan(
self._min_concentration_level,
transform=None,
# set the initial value to be the identity transformation
initial_value=1.0,
)
self.register_constraint(param_name=p_name, constraint=constraint)
def _set_concentration(self, i: int, value: Union[float, Tensor]) -> None:
if not torch.is_tensor(value):
value = torch.as_tensor(value).to(self.concentration0)
self.initialize(**{f"concentration{i}": value})
def _transform(self, X: Tensor) -> Tensor:
r"""Warp the inputs through the Kumaraswamy CDF.
Args:
X: A `input_batch_shape x (batch_shape) x n x d`-dim tensor of inputs.
batch_shape here can either be self.batch_shape or 1's such that
it is broadcastable with self.batch_shape if self.batch_shape is set.
Returns:
A `input_batch_shape x (batch_shape) x n x d`-dim tensor of transformed
inputs.
"""
X_tf = expand_and_copy_tensor(X=X, batch_shape=self.batch_shape)
k = Kumaraswamy(
concentration1=self.concentration1, concentration0=self.concentration0
)
# normalize to [eps, 1-eps]
X_tf[..., self.indices] = k.cdf(
torch.clamp(
X_tf[..., self.indices] * self._X_range + self._X_min,
self._X_min,
1.0 - self._X_min,
)
)
return X_tf
def _untransform(self, X: Tensor) -> Tensor:
r"""Warp the inputs through the Kumaraswamy inverse CDF.
Args:
X: A `input_batch_shape x batch_shape x n x d`-dim tensor of inputs.
Returns:
A `input_batch_shape x batch_shape x n x d`-dim tensor of transformed
inputs.
"""
if len(self.batch_shape) > 0:
if self.batch_shape != X.shape[-2 - len(self.batch_shape) : -2]:
raise BotorchTensorDimensionError(
"The right most batch dims of X must match self.batch_shape: "
f"({self.batch_shape})."
)
X_tf = X.clone()
k = Kumaraswamy(
concentration1=self.concentration1, concentration0=self.concentration0
)
# unnormalize from [eps, 1-eps] to [0,1]
X_tf[..., self.indices] = (
(k.icdf(X_tf[..., self.indices]) - self._X_min) / self._X_range
).clamp(0.0, 1.0)
return X_tf
def transform(self, X: Tensor) -> Tensor:
r"""Transform the inputs.
Args:
X: A `batch_shape x n x d`-dim tensor of inputs.
Returns:
A `batch_shape x n x d`-dim tensor of transformed inputs.
"""
return self._untransform(X) if self.reverse else self._transform(X)
def untransform(self, X: Tensor) -> Tensor:
r"""Un-transform the inputs.
Args:
X: A `batch_shape x n x d`-dim tensor of inputs.
Returns:
A `batch_shape x n x d`-dim tensor of un-transformed inputs.
"""
return self._transform(X) if self.reverse else self._untransform(X)
def equals(self, other: InputTransform) -> bool:
r"""Check if another input transform is equivalent.
Note: The reason that a custom equals method is defined rather than
defining an __eq__ method is because defining an __eq__ method sets
the __hash__ method to None. Hashing modules is currently used in
pytorch. See https://github.com/pytorch/pytorch/issues/7733.
Args:
other: Another input transform.
Returns:
A boolean indicating if the other transform is equivalent.
"""
other_state_dict = other.state_dict()
return (
type(self) == type(other)
and (self.transform_on_train == other.transform_on_train)
and (self.transform_on_eval == other.transform_on_eval)
and (self.transform_on_fantasize == other.transform_on_fantasize)
and all(
torch.allclose(v, other_state_dict[k].to(v))
for k, v in self.state_dict().items()
)
)
def preprocess_transform(self, X: Tensor) -> Tensor:
r"""Apply transforms for preprocessing inputs.
The main use cases for this method are 1) to preprocess training data
before calling `set_train_data` and 2) preprocess `X_baseline` for noisy
acquisition functions so that `X_baseline` is "preprocessed" with the
same transformations as the cached training inputs.
Args:
X: A `batch_shape x n x d`-dim tensor of inputs.
Returns:
A `batch_shape x n x d`-dim tensor of (transformed) inputs.
"""
if self.transform_on_train:
# We need to disable learning of bounds here.
# See why: https://github.com/pytorch/botorch/issues/1078.
if hasattr(self, "learn_bounds"):
learn_bounds = self.learn_bounds
self.learn_bounds = False
result = self.transform(X)
self.learn_bounds = learn_bounds
return result
else:
return self.transform(X)
return X
def forward(self, X: Tensor) -> Tensor:
r"""Transform the inputs to a model.
Args:
X: A `batch_shape x n x d`-dim tensor of inputs.
Returns:
A `batch_shape x n' x d`-dim tensor of transformed inputs.
"""
if self.training:
if self.transform_on_train:
return self.transform(X)
elif self.transform_on_eval:
if fantasize.off() or self.transform_on_fantasize:
return self.transform(X)
return X
def constraint_based_on_distribution_support(prior: torch.distributions.Distribution, device, sample_from_path):
if sample_from_path:
return None
if hasattr(prior.support, 'upper_bound'):
return gpytorch.constraints.Interval(to_tensor(prior.support.lower_bound,device=device),
to_tensor(prior.support.upper_bound,device=device))
else:
return gpytorch.constraints.GreaterThan(to_tensor(prior.support.lower_bound,device=device))
loaded_things = {}
def torch_load(path):
'''
Cached torch load. Caution: This does not copy the output but keeps pointers.
That means, if you modify the output, you modify the output of later calls to this function with the same args.
:param path:
:return:
'''
if path not in loaded_things:
print(f'loading {path}')
with open(path, 'rb') as f:
loaded_things[path] = torch.load(f)
return loaded_things[path]
def get_model(x, y, hyperparameters: dict, sample=True):
sample_from_path = hyperparameters.get('sample_from_extra_prior', None)
device = x.device
num_features = x.shape[-1]
likelihood = gpytorch.likelihoods.GaussianLikelihood(noise_constraint=gpytorch.constraints.Positive())
likelihood.register_prior("noise_prior",
LogNormalPrior(torch.tensor(hyperparameters.get('hebo_noise_logmean',-4.63), device=device),
torch.tensor(hyperparameters.get('hebo_noise_std', 0.5), device=device)
),
"noise")
lengthscale_prior = \
GammaPrior(
torch.tensor(hyperparameters['lengthscale_concentration'], device=device),
torch.tensor(hyperparameters['lengthscale_rate'], device=device))\
if hyperparameters.get('lengthscale_concentration', None) else\
UniformPrior(torch.tensor(0.0, device=device), torch.tensor(1.0, device=device))
covar_module = gpytorch.kernels.MaternKernel(nu=3 / 2, ard_num_dims=num_features,
lengthscale_prior=lengthscale_prior,
lengthscale_constraint=\
constraint_based_on_distribution_support(lengthscale_prior, device, sample_from_path))
# ORIG DIFF: orig lengthscale has no prior
#covar_module.register_prior("lengthscale_prior",
#UniformPrior(.000000001, 1.),
#GammaPrior(concentration=hyperparameters.get('lengthscale_concentration', 1.),
# rate=hyperparameters.get('lengthscale_rate', .1)),
# skewness is controllled by concentration only, want somthing like concetration in [0.1,1.], rate around [.05,1] seems reasonable
#"lengthscale")
outputscale_prior = \
GammaPrior(concentration=hyperparameters.get('outputscale_concentration', .5),
rate=hyperparameters.get('outputscale_rate', 1.))
covar_module = gpytorch.kernels.ScaleKernel(covar_module, outputscale_prior=outputscale_prior,
outputscale_constraint=constraint_based_on_distribution_support(outputscale_prior, device, sample_from_path))
if random.random() < float(hyperparameters.get('add_linear_kernel', True)):
# ORIG DIFF: added priors for variance and outputscale of linear kernel
var_prior = UniformPrior(torch.tensor(0.0, device=device), torch.tensor(1.0, device=device))
out_prior = UniformPrior(torch.tensor(0.0, device=device), torch.tensor(1.0, device=device))
lincovar_module = gpytorch.kernels.ScaleKernel(
gpytorch.kernels.LinearKernel(
variance_prior=var_prior,
variance_constraint=constraint_based_on_distribution_support(var_prior,device,sample_from_path),
),
outputscale_prior=out_prior,
outputscale_constraint=constraint_based_on_distribution_support(out_prior,device,sample_from_path),
)
covar_module = covar_module + lincovar_module
if hyperparameters.get('hebo_warping', False):
# initialize input_warping transformation
warp_tf = Warp(
indices=list(range(num_features)),
# use a prior with median at 1.
# when a=1 and b=1, the Kumaraswamy CDF is the identity function
concentration1_prior=LogNormalPrior(torch.tensor(0.0, device=device), torch.tensor(hyperparameters.get('hebo_input_warping_c1_std',.75), device=device)),
concentration0_prior=LogNormalPrior(torch.tensor(0.0, device=device), torch.tensor(hyperparameters.get('hebo_input_warping_c0_std',.75), device=device)),
)
else:
warp_tf = None
# assume mean 0 always!
if len(y.shape) < len(x.shape):
y = y.unsqueeze(-1)
model = botorch.models.SingleTaskGP(x, y, likelihood, covar_module=covar_module, input_transform=warp_tf)
model.mean_module = ZeroMean(x.shape[:-2])
model.to(device)
likelihood.to(device)
if sample:
model = model.pyro_sample_from_prior()
if sample_from_path:
parameter_sample_distribution = torch_load(sample_from_path) # dict with entries for each parameter
idx_for_len = {}
for parameter_name, parameter_values in parameter_sample_distribution.items():
assert len(parameter_values.shape) == 1
try:
p = eval(parameter_name)
if len(parameter_values) in idx_for_len:
idx = idx_for_len[len(parameter_values)].view(p.shape)
else:
idx = torch.randint(len(parameter_values), p.shape)
idx_for_len[len(parameter_values)] = idx
new_sample = parameter_values[idx].to(device).view(p.shape) # noqa
assert new_sample.shape == p.shape
with torch.no_grad():
p.data = new_sample
except AttributeError:
utils.print_once(f'could not find parameter {parameter_name} in model for `sample_from_extra_prior`')
model.requires_grad_(False)
likelihood.requires_grad_(False)
return model, model.likelihood
else:
assert not(hyperparameters.get('sigmoid', False)) and not(hyperparameters.get('y_minmax_norm', False)), "Sigmoid and y_minmax_norm can only be used to sample models..."
return model, likelihood
@torch.no_grad()
def get_batch(batch_size, seq_len, num_features, device=default_device, hyperparameters=None,
batch_size_per_gp_sample=None, single_eval_pos=None,
fix_to_range=None, equidistant_x=False, verbose=False, **kwargs):
'''
This function is very similar to the equivalent in .fast_gp. The only difference is that this function operates over
a mixture of GP priors.
:param batch_size:
:param seq_len:
:param num_features:
:param device:
:param hyperparameters:
:param for_regression:
:return:
'''
hyperparameters = hyperparameters or {}
with gpytorch.settings.fast_computations(*hyperparameters.get('fast_computations',(True,True,True))):
batch_size_per_gp_sample = (batch_size_per_gp_sample or max(batch_size // 4,1))
assert batch_size % batch_size_per_gp_sample == 0
total_num_candidates = batch_size*(2**(fix_to_range is not None))
num_candidates = batch_size_per_gp_sample * (2**(fix_to_range is not None))
unused_feature_likelihood = hyperparameters.get('unused_feature_likelihood', False)
if equidistant_x:
assert num_features == 1
assert not unused_feature_likelihood
x = torch.linspace(0,1.,seq_len).unsqueeze(0).repeat(total_num_candidates,1).unsqueeze(-1)
else:
x = torch.rand(total_num_candidates, seq_len, num_features, device=device)
samples = []
samples_wo_noise = []
for i in range(0, total_num_candidates, num_candidates):
local_x = x[i:i+num_candidates]
if unused_feature_likelihood:
r = torch.rand(num_features)
unused_feature_mask = r < unused_feature_likelihood
if unused_feature_mask.all():
unused_feature_mask[r.argmin()] = False
used_local_x = local_x[...,~unused_feature_mask]
else:
used_local_x = local_x
get_model_and_likelihood = lambda: get_model(used_local_x, torch.zeros(num_candidates,x.shape[1], device=device), hyperparameters)
model, likelihood = get_model_and_likelihood()
if verbose: print(list(model.named_parameters()),
(list(model.input_transform.named_parameters()), model.input_transform.concentration1, model.input_transform.concentration0)
if model.input_transform is not None else None,
)
# trained_model = ExactGPModel(train_x, train_y, likelihood).cuda()
# trained_model.eval()
successful_sample = 0
throwaway_share = 0.
while successful_sample < 1:
with gpytorch.settings.prior_mode(True):
#print(x.device, device, f'{model.covar_module.base_kernel.lengthscale=}, {model.covar_module.base_kernel.lengthscale.device=}')
d = model(used_local_x)
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
sample_wo_noise = d.sample()
d = likelihood(sample_wo_noise)
except (RuntimeError, ValueError) as e:
successful_sample -= 1
model, likelihood = get_model_and_likelihood()
if successful_sample < -100:
print(f'Could not sample from model {i} after {successful_sample} attempts. {e}')
raise e
continue
sample = d.sample() # bs_per_gp_s x T
if fix_to_range is None:
#for k, v in model.named_parameters(): print(k,v)
samples.append(sample.transpose(0, 1))
samples_wo_noise.append(sample_wo_noise.transpose(0, 1))
break
smaller_mask = sample < fix_to_range[0]
larger_mask = sample >= fix_to_range[1]
in_range_mask = ~ (smaller_mask | larger_mask).any(1)
throwaway_share += (~in_range_mask[:batch_size_per_gp_sample]).sum()/batch_size_per_gp_sample
if in_range_mask.sum() < batch_size_per_gp_sample:
successful_sample -= 1
if successful_sample < 100:
print("Please change hyper-parameters (e.g. decrease outputscale_mean) it"
"seems like the range is set to tight for your hyper-parameters.")
continue
x[i:i+batch_size_per_gp_sample] = local_x[in_range_mask][:batch_size_per_gp_sample]
sample = sample[in_range_mask][:batch_size_per_gp_sample]
samples.append(sample.transpose(0, 1))
samples_wo_noise.append(sample_wo_noise.transpose(0, 1))
successful_sample = True
if random.random() < .01:
print('throwaway share', throwaway_share/(batch_size//batch_size_per_gp_sample))
#print(f'took {time.time() - start}')
sample = torch.cat(samples, 1)[...,None]
sample_wo_noise = torch.cat(samples_wo_noise, 1)[...,None]
x = x.view(-1,batch_size,seq_len,num_features)[0]
# TODO think about enabling the line below
#sample = sample - sample[0, :].unsqueeze(0).expand(*sample.shape)
x = x.transpose(0,1)
assert x.shape[:2] == sample.shape[:2]
return Batch(x=x, y=sample, target_y=sample if hyperparameters.get('observation_noise', True) else sample_wo_noise)
DataLoader = get_batch_to_dataloader(get_batch)
|