File size: 17,779 Bytes
165ee00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from __future__ import annotations

import itertools
import time
import yaml
from contextlib import nullcontext
from tqdm import tqdm

import torch
from torch import nn
from torch.cuda.amp import autocast, GradScaler

from . import utils
from .priors import prior
from . import priors
from .transformer import TransformerModel
from .bar_distribution import BarDistribution, FullSupportBarDistribution, get_bucket_limits, get_custom_bar_dist
from .utils import get_cosine_schedule_with_warmup, get_openai_lr, StoreDictKeyPair, get_weighted_single_eval_pos_sampler, get_uniform_single_eval_pos_sampler
from . import positional_encodings
from .utils import init_dist

class Losses():
    gaussian = nn.GaussianNLLLoss(full=True, reduction='none')
    mse = nn.MSELoss(reduction='none')
    ce = lambda num_classes: nn.CrossEntropyLoss(reduction='none', weight=torch.ones(num_classes))
    bce = nn.BCEWithLogitsLoss(reduction='none')
    get_BarDistribution = BarDistribution


def train(priordataloader_class_or_get_batch: prior.PriorDataLoader | callable, criterion, encoder_generator, emsize=200, nhid=200, nlayers=6, nhead=2, dropout=0.0,
          epochs=10, steps_per_epoch=100, batch_size=200, seq_len=10, lr=None, weight_decay=0.0, warmup_epochs=10, input_normalization=False,
          y_encoder_generator=None, pos_encoder_generator=None, decoder_dict={}, extra_prior_kwargs_dict={}, scheduler=get_cosine_schedule_with_warmup,
          load_weights_from_this_state_dict=None, validation_period=10, single_eval_pos_gen=None, gpu_device='cuda:0',
          aggregate_k_gradients=1, verbose=True, style_encoder_generator=None, epoch_callback=None, step_callback=None, continue_model=None,
          initializer=None, initialize_with_model=None, train_mixed_precision=False, efficient_eval_masking=True, border_decoder=None
          , num_global_att_tokens=0, progress_bar=False, **model_extra_args):
    device = gpu_device if torch.cuda.is_available() else 'cpu:0'
    print(f'Using {device} device')
    using_dist, rank, device = init_dist(device)
    single_eval_pos_gen = single_eval_pos_gen if callable(single_eval_pos_gen) else lambda: single_eval_pos_gen

    if not isinstance(priordataloader_class_or_get_batch, prior.PriorDataLoader):
        priordataloader_class = priors.utils.get_batch_to_dataloader(priordataloader_class_or_get_batch)
    else:
        priordataloader_class = priordataloader_class_or_get_batch

    def eval_pos_seq_len_sampler():
        single_eval_pos = single_eval_pos_gen()
        return single_eval_pos, seq_len
    dl = priordataloader_class(num_steps=steps_per_epoch,
                               batch_size=batch_size,
                               eval_pos_seq_len_sampler=eval_pos_seq_len_sampler,
                               seq_len_maximum=seq_len,
                               device=device,
                               **extra_prior_kwargs_dict)

    test_batch: prior.Batch = dl.get_test_batch()
    style_def = test_batch.style
    print(f'Style definition of first 3 examples: {style_def[:3] if style_def is not None else None}')
    style_encoder = style_encoder_generator(style_def.shape[1], emsize) if (style_def is not None) else None
    pos_encoder = (pos_encoder_generator or positional_encodings.NoPositionalEncoding)(emsize, seq_len * 2)
    if isinstance(criterion, nn.GaussianNLLLoss):
        n_out = 2
    elif isinstance(criterion, BarDistribution) or "BarDistribution" in criterion.__class__.__name__: # TODO remove this fix (only for dev)
        n_out = criterion.num_bars
    elif isinstance(criterion, nn.CrossEntropyLoss):
        n_out = criterion.weight.shape[0]
    else:
        n_out = 1

    #border_decoder = None if border_decoder is None else border_decoder(emsize, criterion.num_bars + 1).to(device)

    if continue_model:
        model = continue_model
    else:
        decoder_dict = decoder_dict if decoder_dict else {'standard': (None, n_out)}

        decoder_once_dict = {}
        if test_batch.mean_prediction is not None:
            decoder_once_dict['mean_prediction'] = decoder_dict['standard']

        encoder = encoder_generator(dl.num_features, emsize)
        model = TransformerModel(encoder=encoder
                                 , nhead=nhead
                                 , ninp=emsize
                                 , nhid=nhid
                                 , nlayers=nlayers
                                 , dropout=dropout
                                 , style_encoder=style_encoder
                                 , y_encoder=y_encoder_generator(1, emsize)
                                 , input_normalization=input_normalization
                                 , pos_encoder=pos_encoder
                                 , decoder_dict=decoder_dict
                                 , init_method=initializer
                                 , efficient_eval_masking=efficient_eval_masking
                                 , decoder_once_dict=decoder_once_dict
                                 , num_global_att_tokens=num_global_att_tokens
                                 , **model_extra_args
                                 )
    model.criterion = criterion
    if load_weights_from_this_state_dict is not None:
        model.load_state_dict(load_weights_from_this_state_dict)
    if initialize_with_model is not None:
        model.init_from_small_model(initialize_with_model)

    print(f"Using a Transformer with {sum(p.numel() for p in model.parameters())/1000/1000:.{2}f} M parameters")

    try:
        for (k, v), (k2, v2) in zip(model.state_dict().items(), initialize_with_model.state_dict().items()):
            print(k, ((v - v2) / v).abs().mean(), v.shape)
    except Exception:
        pass

    model.to(device)
    if using_dist:
        print("Distributed training")
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank],
                                                          output_device=rank,
                                                          broadcast_buffers=False,
                                                          find_unused_parameters=test_batch.mean_prediction is not None)
        dl.model = model.module # use local model, should not use multi-gpu functionality..
    else:
        dl.model = model


    # learning rate
    if lr is None:
        lr = get_openai_lr(model)
        print(f"Using OpenAI max lr of {lr}.")
    optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
    scheduler = scheduler(optimizer, warmup_epochs, epochs if epochs is not None else 100) # when training for fixed time lr schedule takes 100 steps

    scaler = GradScaler() if train_mixed_precision else None

    # check that everything uses up-to-date APIs
    utils.check_compatibility(dl)

    def train_epoch():
        model.train()  # Turn on the train mode
        total_loss = 0.
        total_positional_losses = 0.
        total_positional_losses_recorded = 0
        nan_steps = 0
        ignore_steps = 0
        before_get_batch = time.time()
        assert len(dl) % aggregate_k_gradients == 0, 'Please set the number of steps per epoch s.t. `aggregate_k_gradients` divides it.'
        tqdm_iter = tqdm(range(len(dl)), desc='Training Epoch') if rank==0 and progress_bar else None # , disable=not verbose

        for batch, full_data in enumerate(dl):
            data, targets, single_eval_pos = (full_data.style, full_data.x, full_data.y), full_data.target_y, full_data.single_eval_pos

            def get_metrics():
                return total_loss / steps_per_epoch, (
                        total_positional_losses / total_positional_losses_recorded).tolist(), \
                       time_to_get_batch, forward_time, step_time, nan_steps.cpu().item() / (batch + 1), \
                       ignore_steps.cpu().item() / (batch + 1)

            tqdm_iter.update() if tqdm_iter is not None else None
            if using_dist and not (batch % aggregate_k_gradients == aggregate_k_gradients - 1):
                cm = model.no_sync()
            else:
                cm = nullcontext()
            with cm:
                time_to_get_batch = time.time() - before_get_batch
                before_forward = time.time()
                try:
                    metrics_to_log = {}
                    with autocast(enabled=scaler is not None):
                        # If style is set to None, it should not be transferred to device
                        out = model(tuple(e.to(device) if torch.is_tensor(e) else e for e in data),
                                    single_eval_pos=single_eval_pos, only_return_standard_out=False)

                        # this handling is for training old models only, this can be deleted soon(ish)
                        # to only support models that return a tuple of dicts
                        out, output_once = out if isinstance(out, tuple) else (out, None)
                        output = out['standard'] if isinstance(out, dict) else out

                        forward_time = time.time() - before_forward

                        if single_eval_pos is not None:
                            targets = targets[single_eval_pos:]

                        if len(targets.shape) == len(output.shape):
                            # this implies the prior uses a trailing 1 dimesnion
                            # below we assume this not to be the case
                            targets = targets.squeeze(-1)
                        assert targets.shape == output.shape[:-1], f"Target shape {targets.shape} " \
                                                                   "does not match output shape {output.shape}"
                        if isinstance(criterion, nn.GaussianNLLLoss):
                            assert output.shape[-1] == 2, \
                                'need to write a little bit of code to handle multiple regression targets at once'

                            mean_pred = output[..., 0]
                            var_pred = output[..., 1].abs()
                            losses = criterion(mean_pred.flatten(), targets.flatten(), var=var_pred.flatten())
                        elif isinstance(criterion, (nn.MSELoss, nn.BCEWithLogitsLoss)):
                            targets[torch.isnan(targets)] = -100
                            losses = criterion(output.flatten(), targets.flatten())
                        elif isinstance(criterion, nn.CrossEntropyLoss):
                            targets[torch.isnan(targets)] = -100
                            print(f"{targets.min()=}, {targets.max()=}")
                            losses = criterion(output.reshape(-1, n_out), targets.long().flatten())
                        elif border_decoder is not None:
                            def apply_batch_wise_criterion(i):
                                output_, targets_, borders_ = output_adaptive[:, i], targets[:, i], borders[i]
                                criterion_ = get_custom_bar_dist(borders_, criterion).to(device)
                                return criterion_(output_, targets_)
                            output_adaptive, borders = out['adaptive_bar'], output_once['borders']
                            losses_adaptive_bar = torch.stack([apply_batch_wise_criterion(i) for i in range(output_adaptive.shape[1])], 1)
                            losses_fixed_bar = criterion(output, targets)
                            losses = (losses_adaptive_bar + losses_fixed_bar) / 2

                            metrics_to_log = {**metrics_to_log,
                                              **{'loss_fixed_bar': losses_fixed_bar.mean().cpu().detach().item(),
                                                 'loss_adaptive_bar': losses_adaptive_bar.mean().cpu().detach().item()}}
                        elif isinstance(criterion, BarDistribution) and full_data.mean_prediction:
                            assert 'mean_prediction' in output_once
                            utils.print_once('Using mean prediction for loss')
                            losses = criterion(output, targets, mean_prediction_logits=output_once['mean_prediction'])
                            # the mean pred loss appears as the last per sequence
                        else:
                            losses = criterion(output, targets)
                        losses = losses.view(-1, output.shape[1]) # sometimes the seq length can be one off
                                                                  # that is because bar dist appends the mean
                        loss, nan_share = utils.torch_nanmean(losses.mean(0), return_nanshare=True)
                        loss_scaled = loss / aggregate_k_gradients

                    if scaler: loss_scaled = scaler.scale(loss_scaled)
                    loss_scaled.backward()

                    if batch % aggregate_k_gradients == aggregate_k_gradients - 1:
                        if scaler: scaler.unscale_(optimizer)
                        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
                        if scaler:
                            scaler.step(optimizer)
                            scaler.update()
                        else:
                            optimizer.step()
                        optimizer.zero_grad()

                    step_time = time.time() - before_forward

                    if not torch.isnan(loss):
                        total_loss += loss.cpu().detach().item()
                        total_positional_losses += losses.mean(1).cpu().detach() if single_eval_pos is None else \
                            nn.functional.one_hot(torch.tensor(single_eval_pos), seq_len)*\
                            utils.torch_nanmean(losses[:seq_len-single_eval_pos].mean(0)).cpu().detach()

                        total_positional_losses_recorded += torch.ones(seq_len) if single_eval_pos is None else \
                            nn.functional.one_hot(torch.tensor(single_eval_pos), seq_len)

                        metrics_to_log = {**metrics_to_log, **{f"loss": loss, "single_eval_pos": single_eval_pos}}
                        if step_callback is not None and rank == 0:
                            step_callback(metrics_to_log)
                        nan_steps += nan_share
                        ignore_steps += (targets == -100).float().mean()
                except Exception as e:
                    print("Invalid step encountered, skipping...")
                    print(e)
                    raise(e)

            #total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time, nan_share, ignore_share = get_metrics()
            if tqdm_iter:
                tqdm_iter.set_postfix({'data_time': time_to_get_batch, 'step_time': step_time, 'mean_loss': total_loss / (batch+1)})

            before_get_batch = time.time()
        return get_metrics()

    total_loss = float('inf')
    total_positional_losses = float('inf')
    try:
        # Initially test the epoch callback function
        if epoch_callback is not None and rank == 0:
            epoch_callback(model, 1, data_loader=dl, scheduler=scheduler)
        for epoch in (range(1, epochs + 1) if epochs is not None else itertools.count(1)):
            epoch_start_time = time.time()
            try:
                total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time, nan_share, ignore_share =\
                    train_epoch()
            except Exception as e:
                print("Invalid epoch encountered, skipping...")
                print(e)
                raise (e)
            if hasattr(dl, 'validate') and epoch % validation_period == 0:
                with torch.no_grad():
                    val_score = dl.validate(model)
            
            else:
                val_score = None

            if verbose:
                print('-' * 89)
                print(
                    f'| end of epoch {epoch:3d} | time: {(time.time() - epoch_start_time):5.2f}s | mean loss {total_loss:5.2f} | '
                    f"pos losses {','.join([f'{l:5.2f}' for l in total_positional_losses])}, lr {scheduler.get_last_lr()[0]}"
                    f' data time {time_to_get_batch:5.2f} step time {step_time:5.2f}'
                    f' forward time {forward_time:5.2f}' 
                    f' nan share {nan_share:5.2f} ignore share (for classification tasks) {ignore_share:5.4f}'
                    + (f'val score {val_score}' if val_score is not None else ''))
                print('-' * 89)

            # stepping with wallclock time based scheduler
            if epoch_callback is not None and rank == 0:
                epoch_callback(model, epoch, data_loader=dl, scheduler=scheduler)
            scheduler.step()
    except KeyboardInterrupt:
        pass

    if rank == 0: # trivially true for non-parallel training
        if isinstance(model, torch.nn.parallel.DistributedDataParallel):
            model = model.module
            dl = None
        return total_loss, total_positional_losses, model.to('cpu'), dl

def _parse_args(config_parser, parser):
    # Do we have a config file to parse?
    args_config, remaining = config_parser.parse_known_args()
    if args_config.config:
        with open(args_config.config, 'r') as f:
            cfg = yaml.safe_load(f)
            parser.set_defaults(**cfg)

    # The main arg parser parses the rest of the args, the usual
    # defaults will have been overridden if config file specified.
    args = parser.parse_args(remaining)

    # Cache the args as a text string to save them in the output dir later
    args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
    return args, args_text