Spaces:
Sleeping
Sleeping
File size: 17,779 Bytes
165ee00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
from __future__ import annotations
import itertools
import time
import yaml
from contextlib import nullcontext
from tqdm import tqdm
import torch
from torch import nn
from torch.cuda.amp import autocast, GradScaler
from . import utils
from .priors import prior
from . import priors
from .transformer import TransformerModel
from .bar_distribution import BarDistribution, FullSupportBarDistribution, get_bucket_limits, get_custom_bar_dist
from .utils import get_cosine_schedule_with_warmup, get_openai_lr, StoreDictKeyPair, get_weighted_single_eval_pos_sampler, get_uniform_single_eval_pos_sampler
from . import positional_encodings
from .utils import init_dist
class Losses():
gaussian = nn.GaussianNLLLoss(full=True, reduction='none')
mse = nn.MSELoss(reduction='none')
ce = lambda num_classes: nn.CrossEntropyLoss(reduction='none', weight=torch.ones(num_classes))
bce = nn.BCEWithLogitsLoss(reduction='none')
get_BarDistribution = BarDistribution
def train(priordataloader_class_or_get_batch: prior.PriorDataLoader | callable, criterion, encoder_generator, emsize=200, nhid=200, nlayers=6, nhead=2, dropout=0.0,
epochs=10, steps_per_epoch=100, batch_size=200, seq_len=10, lr=None, weight_decay=0.0, warmup_epochs=10, input_normalization=False,
y_encoder_generator=None, pos_encoder_generator=None, decoder_dict={}, extra_prior_kwargs_dict={}, scheduler=get_cosine_schedule_with_warmup,
load_weights_from_this_state_dict=None, validation_period=10, single_eval_pos_gen=None, gpu_device='cuda:0',
aggregate_k_gradients=1, verbose=True, style_encoder_generator=None, epoch_callback=None, step_callback=None, continue_model=None,
initializer=None, initialize_with_model=None, train_mixed_precision=False, efficient_eval_masking=True, border_decoder=None
, num_global_att_tokens=0, progress_bar=False, **model_extra_args):
device = gpu_device if torch.cuda.is_available() else 'cpu:0'
print(f'Using {device} device')
using_dist, rank, device = init_dist(device)
single_eval_pos_gen = single_eval_pos_gen if callable(single_eval_pos_gen) else lambda: single_eval_pos_gen
if not isinstance(priordataloader_class_or_get_batch, prior.PriorDataLoader):
priordataloader_class = priors.utils.get_batch_to_dataloader(priordataloader_class_or_get_batch)
else:
priordataloader_class = priordataloader_class_or_get_batch
def eval_pos_seq_len_sampler():
single_eval_pos = single_eval_pos_gen()
return single_eval_pos, seq_len
dl = priordataloader_class(num_steps=steps_per_epoch,
batch_size=batch_size,
eval_pos_seq_len_sampler=eval_pos_seq_len_sampler,
seq_len_maximum=seq_len,
device=device,
**extra_prior_kwargs_dict)
test_batch: prior.Batch = dl.get_test_batch()
style_def = test_batch.style
print(f'Style definition of first 3 examples: {style_def[:3] if style_def is not None else None}')
style_encoder = style_encoder_generator(style_def.shape[1], emsize) if (style_def is not None) else None
pos_encoder = (pos_encoder_generator or positional_encodings.NoPositionalEncoding)(emsize, seq_len * 2)
if isinstance(criterion, nn.GaussianNLLLoss):
n_out = 2
elif isinstance(criterion, BarDistribution) or "BarDistribution" in criterion.__class__.__name__: # TODO remove this fix (only for dev)
n_out = criterion.num_bars
elif isinstance(criterion, nn.CrossEntropyLoss):
n_out = criterion.weight.shape[0]
else:
n_out = 1
#border_decoder = None if border_decoder is None else border_decoder(emsize, criterion.num_bars + 1).to(device)
if continue_model:
model = continue_model
else:
decoder_dict = decoder_dict if decoder_dict else {'standard': (None, n_out)}
decoder_once_dict = {}
if test_batch.mean_prediction is not None:
decoder_once_dict['mean_prediction'] = decoder_dict['standard']
encoder = encoder_generator(dl.num_features, emsize)
model = TransformerModel(encoder=encoder
, nhead=nhead
, ninp=emsize
, nhid=nhid
, nlayers=nlayers
, dropout=dropout
, style_encoder=style_encoder
, y_encoder=y_encoder_generator(1, emsize)
, input_normalization=input_normalization
, pos_encoder=pos_encoder
, decoder_dict=decoder_dict
, init_method=initializer
, efficient_eval_masking=efficient_eval_masking
, decoder_once_dict=decoder_once_dict
, num_global_att_tokens=num_global_att_tokens
, **model_extra_args
)
model.criterion = criterion
if load_weights_from_this_state_dict is not None:
model.load_state_dict(load_weights_from_this_state_dict)
if initialize_with_model is not None:
model.init_from_small_model(initialize_with_model)
print(f"Using a Transformer with {sum(p.numel() for p in model.parameters())/1000/1000:.{2}f} M parameters")
try:
for (k, v), (k2, v2) in zip(model.state_dict().items(), initialize_with_model.state_dict().items()):
print(k, ((v - v2) / v).abs().mean(), v.shape)
except Exception:
pass
model.to(device)
if using_dist:
print("Distributed training")
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[rank],
output_device=rank,
broadcast_buffers=False,
find_unused_parameters=test_batch.mean_prediction is not None)
dl.model = model.module # use local model, should not use multi-gpu functionality..
else:
dl.model = model
# learning rate
if lr is None:
lr = get_openai_lr(model)
print(f"Using OpenAI max lr of {lr}.")
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
scheduler = scheduler(optimizer, warmup_epochs, epochs if epochs is not None else 100) # when training for fixed time lr schedule takes 100 steps
scaler = GradScaler() if train_mixed_precision else None
# check that everything uses up-to-date APIs
utils.check_compatibility(dl)
def train_epoch():
model.train() # Turn on the train mode
total_loss = 0.
total_positional_losses = 0.
total_positional_losses_recorded = 0
nan_steps = 0
ignore_steps = 0
before_get_batch = time.time()
assert len(dl) % aggregate_k_gradients == 0, 'Please set the number of steps per epoch s.t. `aggregate_k_gradients` divides it.'
tqdm_iter = tqdm(range(len(dl)), desc='Training Epoch') if rank==0 and progress_bar else None # , disable=not verbose
for batch, full_data in enumerate(dl):
data, targets, single_eval_pos = (full_data.style, full_data.x, full_data.y), full_data.target_y, full_data.single_eval_pos
def get_metrics():
return total_loss / steps_per_epoch, (
total_positional_losses / total_positional_losses_recorded).tolist(), \
time_to_get_batch, forward_time, step_time, nan_steps.cpu().item() / (batch + 1), \
ignore_steps.cpu().item() / (batch + 1)
tqdm_iter.update() if tqdm_iter is not None else None
if using_dist and not (batch % aggregate_k_gradients == aggregate_k_gradients - 1):
cm = model.no_sync()
else:
cm = nullcontext()
with cm:
time_to_get_batch = time.time() - before_get_batch
before_forward = time.time()
try:
metrics_to_log = {}
with autocast(enabled=scaler is not None):
# If style is set to None, it should not be transferred to device
out = model(tuple(e.to(device) if torch.is_tensor(e) else e for e in data),
single_eval_pos=single_eval_pos, only_return_standard_out=False)
# this handling is for training old models only, this can be deleted soon(ish)
# to only support models that return a tuple of dicts
out, output_once = out if isinstance(out, tuple) else (out, None)
output = out['standard'] if isinstance(out, dict) else out
forward_time = time.time() - before_forward
if single_eval_pos is not None:
targets = targets[single_eval_pos:]
if len(targets.shape) == len(output.shape):
# this implies the prior uses a trailing 1 dimesnion
# below we assume this not to be the case
targets = targets.squeeze(-1)
assert targets.shape == output.shape[:-1], f"Target shape {targets.shape} " \
"does not match output shape {output.shape}"
if isinstance(criterion, nn.GaussianNLLLoss):
assert output.shape[-1] == 2, \
'need to write a little bit of code to handle multiple regression targets at once'
mean_pred = output[..., 0]
var_pred = output[..., 1].abs()
losses = criterion(mean_pred.flatten(), targets.flatten(), var=var_pred.flatten())
elif isinstance(criterion, (nn.MSELoss, nn.BCEWithLogitsLoss)):
targets[torch.isnan(targets)] = -100
losses = criterion(output.flatten(), targets.flatten())
elif isinstance(criterion, nn.CrossEntropyLoss):
targets[torch.isnan(targets)] = -100
print(f"{targets.min()=}, {targets.max()=}")
losses = criterion(output.reshape(-1, n_out), targets.long().flatten())
elif border_decoder is not None:
def apply_batch_wise_criterion(i):
output_, targets_, borders_ = output_adaptive[:, i], targets[:, i], borders[i]
criterion_ = get_custom_bar_dist(borders_, criterion).to(device)
return criterion_(output_, targets_)
output_adaptive, borders = out['adaptive_bar'], output_once['borders']
losses_adaptive_bar = torch.stack([apply_batch_wise_criterion(i) for i in range(output_adaptive.shape[1])], 1)
losses_fixed_bar = criterion(output, targets)
losses = (losses_adaptive_bar + losses_fixed_bar) / 2
metrics_to_log = {**metrics_to_log,
**{'loss_fixed_bar': losses_fixed_bar.mean().cpu().detach().item(),
'loss_adaptive_bar': losses_adaptive_bar.mean().cpu().detach().item()}}
elif isinstance(criterion, BarDistribution) and full_data.mean_prediction:
assert 'mean_prediction' in output_once
utils.print_once('Using mean prediction for loss')
losses = criterion(output, targets, mean_prediction_logits=output_once['mean_prediction'])
# the mean pred loss appears as the last per sequence
else:
losses = criterion(output, targets)
losses = losses.view(-1, output.shape[1]) # sometimes the seq length can be one off
# that is because bar dist appends the mean
loss, nan_share = utils.torch_nanmean(losses.mean(0), return_nanshare=True)
loss_scaled = loss / aggregate_k_gradients
if scaler: loss_scaled = scaler.scale(loss_scaled)
loss_scaled.backward()
if batch % aggregate_k_gradients == aggregate_k_gradients - 1:
if scaler: scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
if scaler:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
optimizer.zero_grad()
step_time = time.time() - before_forward
if not torch.isnan(loss):
total_loss += loss.cpu().detach().item()
total_positional_losses += losses.mean(1).cpu().detach() if single_eval_pos is None else \
nn.functional.one_hot(torch.tensor(single_eval_pos), seq_len)*\
utils.torch_nanmean(losses[:seq_len-single_eval_pos].mean(0)).cpu().detach()
total_positional_losses_recorded += torch.ones(seq_len) if single_eval_pos is None else \
nn.functional.one_hot(torch.tensor(single_eval_pos), seq_len)
metrics_to_log = {**metrics_to_log, **{f"loss": loss, "single_eval_pos": single_eval_pos}}
if step_callback is not None and rank == 0:
step_callback(metrics_to_log)
nan_steps += nan_share
ignore_steps += (targets == -100).float().mean()
except Exception as e:
print("Invalid step encountered, skipping...")
print(e)
raise(e)
#total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time, nan_share, ignore_share = get_metrics()
if tqdm_iter:
tqdm_iter.set_postfix({'data_time': time_to_get_batch, 'step_time': step_time, 'mean_loss': total_loss / (batch+1)})
before_get_batch = time.time()
return get_metrics()
total_loss = float('inf')
total_positional_losses = float('inf')
try:
# Initially test the epoch callback function
if epoch_callback is not None and rank == 0:
epoch_callback(model, 1, data_loader=dl, scheduler=scheduler)
for epoch in (range(1, epochs + 1) if epochs is not None else itertools.count(1)):
epoch_start_time = time.time()
try:
total_loss, total_positional_losses, time_to_get_batch, forward_time, step_time, nan_share, ignore_share =\
train_epoch()
except Exception as e:
print("Invalid epoch encountered, skipping...")
print(e)
raise (e)
if hasattr(dl, 'validate') and epoch % validation_period == 0:
with torch.no_grad():
val_score = dl.validate(model)
else:
val_score = None
if verbose:
print('-' * 89)
print(
f'| end of epoch {epoch:3d} | time: {(time.time() - epoch_start_time):5.2f}s | mean loss {total_loss:5.2f} | '
f"pos losses {','.join([f'{l:5.2f}' for l in total_positional_losses])}, lr {scheduler.get_last_lr()[0]}"
f' data time {time_to_get_batch:5.2f} step time {step_time:5.2f}'
f' forward time {forward_time:5.2f}'
f' nan share {nan_share:5.2f} ignore share (for classification tasks) {ignore_share:5.4f}'
+ (f'val score {val_score}' if val_score is not None else ''))
print('-' * 89)
# stepping with wallclock time based scheduler
if epoch_callback is not None and rank == 0:
epoch_callback(model, epoch, data_loader=dl, scheduler=scheduler)
scheduler.step()
except KeyboardInterrupt:
pass
if rank == 0: # trivially true for non-parallel training
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
model = model.module
dl = None
return total_loss, total_positional_losses, model.to('cpu'), dl
def _parse_args(config_parser, parser):
# Do we have a config file to parse?
args_config, remaining = config_parser.parse_known_args()
if args_config.config:
with open(args_config.config, 'r') as f:
cfg = yaml.safe_load(f)
parser.set_defaults(**cfg)
# The main arg parser parses the rest of the args, the usual
# defaults will have been overridden if config file specified.
args = parser.parse_args(remaining)
# Cache the args as a text string to save them in the output dir later
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
return args, args_text
|