Spaces:
Sleeping
Sleeping
File size: 12,591 Bytes
165ee00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import os
import math
import argparse
import random
import datetime
import itertools
import torch
from torch import nn
from torch.optim.lr_scheduler import LambdaLR
import numpy as np
# copied from huggingface
def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles=0.5, last_epoch=-1):
""" Create a schedule with a learning rate that decreases following the
values of the cosine function between 0 and `pi * cycles` after a warmup
period during which it increases linearly between 0 and 1.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return LambdaLR(optimizer, lr_lambda, last_epoch)
# copied from huggingface
def get_restarting_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, steps_per_restart, num_cycles=0.5, last_epoch=-1):
assert num_training_steps % steps_per_restart == 0
def inner_lr_lambda(current_step, num_warmup_steps, num_training_steps):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
def lr_lambda(current_step):
inner_step = current_step % steps_per_restart
return inner_lr_lambda(inner_step,
num_warmup_steps if current_step < steps_per_restart else 0,
steps_per_restart
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
# copied from huggingface
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
"""
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
Args:
optimizer (:class:`~torch.optim.Optimizer`):
The optimizer for which to schedule the learning rate.
num_warmup_steps (:obj:`int`):
The number of steps for the warmup phase.
num_training_steps (:obj:`int`):
The total number of training steps.
last_epoch (:obj:`int`, `optional`, defaults to -1):
The index of the last epoch when resuming training.
Return:
:obj:`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_openai_lr(transformer_model):
num_params = sum(p.numel() for p in transformer_model.parameters())
return 0.003239 - 0.0001395 * math.log(num_params)
def get_weighted_single_eval_pos_sampler(max_len, min_len=0, p=1.0):
"""
This gives a sampler that can be used for `single_eval_pos` which yields good performance for all positions p,
where p <= `max_len`. At most `max_len` - 1 examples are shown to the Transformer.
:return: Sampler that can be fed to `train()` as `single_eval_pos_gen`.
"""
return lambda: random.choices(range(min_len, max_len), [1 / math.pow(((max_len - min_len) - i), p) for i in range(max_len - min_len)])[0]
def get_uniform_single_eval_pos_sampler(max_len, min_len=0):
"""
Just sample any evaluation position with the same weight
:return: Sampler that can be fed to `train()` as `single_eval_pos_gen`.
"""
return lambda: random.choices(range(min_len, max_len))[0]
class SeqBN(nn.Module):
def __init__(self, d_model):
super().__init__()
self.bn = nn.BatchNorm1d(d_model)
self.d_model = d_model
def forward(self, x):
assert self.d_model == x.shape[-1]
flat_x = x.view(-1, self.d_model)
flat_x = self.bn(flat_x)
return flat_x.view(*x.shape)
def set_locals_in_self(locals):
"""
Call this function like `set_locals_in_self(locals())` to set all local variables as object variables.
Especially useful right at the beginning of `__init__`.
:param locals: `locals()`
"""
self = locals['self']
for var_name, val in locals.items():
if var_name != 'self': setattr(self, var_name, val)
default_device = 'cuda:0' if torch.cuda.is_available() else 'cpu:0'
# Copied from StackOverflow, but we do an eval on the values additionally
class StoreDictKeyPair(argparse.Action):
def __init__(self, option_strings, dest, nargs=None, **kwargs):
self._nargs = nargs
super(StoreDictKeyPair, self).__init__(option_strings, dest, nargs=nargs, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
my_dict = {}
for kv in values:
k, v = kv.split("=")
try:
my_dict[k] = eval(v)
except NameError:
my_dict[k] = v
setattr(namespace, self.dest, my_dict)
print("dict values: {}".format(my_dict))
def get_nan_value(v, set_value_to_nan=1.0):
if random.random() < set_value_to_nan:
return v
else:
return random.choice([-999, 0, 1, 999])
def to_ranking(data):
x = (data >= data.unsqueeze(-3))
x = x.sum(0)
return x
# TODO: Is there a better way to do this?
# 1. Cmparing to unique elements: When all values are different we still get quadratic blowup
# 2. Argsort(Argsort()) returns ranking, but with duplicate values there is an ordering which is problematic
# 3. Argsort(Argsort(Unique))->Scatter seems a bit complicated, doesn't have quadratic blowup, but how fast?
def to_ranking_low_mem(data):
x = torch.zeros_like(data)
for col in range(data.shape[-1]):
x_ = (data[:, :, col] >= data[:, :, col].unsqueeze(-2))
x_ = x_.sum(0)
x[:, :, col] = x_
return x
def nan_handling_missing_for_unknown_reason_value(nan_prob=1.0):
return get_nan_value(float('nan'), nan_prob)
def nan_handling_missing_for_no_reason_value(nan_prob=1.0):
return get_nan_value(float('-inf'), nan_prob)
def nan_handling_missing_for_a_reason_value(nan_prob=1.0):
return get_nan_value(float('inf'), nan_prob)
def torch_nanmean(x, axis=0, return_nanshare=False):
num = torch.where(torch.isnan(x), torch.full_like(x, 0), torch.full_like(x, 1)).sum(axis=axis)
value = torch.where(torch.isnan(x), torch.full_like(x, 0), x).sum(axis=axis)
if return_nanshare:
return value / num, 1.-num/x.shape[axis]
return value / num
def torch_nanstd(x, axis=0):
num = torch.where(torch.isnan(x), torch.full_like(x, 0), torch.full_like(x, 1)).sum(axis=axis)
value = torch.where(torch.isnan(x), torch.full_like(x, 0), x).sum(axis=axis)
mean = value / num
mean_broadcast = torch.repeat_interleave(mean.unsqueeze(axis), x.shape[axis], dim=axis)
return torch.sqrt(torch.nansum(torch.square(mean_broadcast - x), axis=axis) / (num - 1))
def normalize_data(data, normalize_positions=-1, return_scaling=False):
if normalize_positions > 0:
mean = torch_nanmean(data[:normalize_positions], axis=0)
std = torch_nanstd(data[:normalize_positions], axis=0) + .000001
else:
mean = torch_nanmean(data, axis=0)
std = torch_nanstd(data, axis=0) + .000001
data = (data - mean) / std
data = torch.clip(data, min=-100, max=100)
if return_scaling:
return data, (mean, std)
return data
def remove_outliers(X, n_sigma=4, normalize_positions=-1):
# Expects T, B, H
assert len(X.shape) == 3, "X must be T,B,H"
#for b in range(X.shape[1]):
#for col in range(X.shape[2]):
data = X if normalize_positions == -1 else X[:normalize_positions]
data_clean = data[:].clone()
data_mean, data_std = torch_nanmean(data, axis=0), torch_nanstd(data, axis=0)
cut_off = data_std * n_sigma
lower, upper = data_mean - cut_off, data_mean + cut_off
data_clean[torch.logical_or(data_clean > upper, data_clean < lower)] = np.nan
data_mean, data_std = torch_nanmean(data_clean, axis=0), torch_nanstd(data_clean, axis=0)
cut_off = data_std * n_sigma
lower, upper = data_mean - cut_off, data_mean + cut_off
X = torch.maximum(-torch.log(1+torch.abs(X)) + lower, X)
X = torch.minimum(torch.log(1+torch.abs(X)) + upper, X)
# print(ds[1][data < lower, col], ds[1][data > upper, col], ds[1][~np.isnan(data), col].shape, data_mean, data_std)
return X
def bool_mask_to_att_mask(mask):
return mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
def print_on_master_only(is_master):
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def init_dist(device):
print('init dist')
if 'LOCAL_RANK' in os.environ:
# launched with torch.distributed.launch
rank = int(os.environ["LOCAL_RANK"])
print('torch.distributed.launch and my rank is', rank)
torch.cuda.set_device(rank)
os.environ['CUDA_VISIBLE_DEVICES'] = str(rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://", timeout=datetime.timedelta(seconds=20),
world_size=torch.cuda.device_count(), rank=rank)
torch.distributed.barrier()
print_on_master_only(rank == 0)
print(f"Distributed training on {torch.cuda.device_count()} GPUs, this is rank {rank}, "
"only I can print, but when using print(..., force=True) it will print on all ranks.")
return True, rank, f'cuda:{rank}'
elif 'SLURM_PROCID' in os.environ and torch.cuda.device_count() > 1:
# this is for multi gpu when starting with submitit
assert device != 'cpu:0'
rank = int(os.environ['SLURM_PROCID'])
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
torch.cuda.set_device(rank)
os.environ['CUDA_VISIBLE_DEVICES'] = str(rank)
print('distributed submitit launch and my rank is', rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://", timeout=datetime.timedelta(seconds=20),
world_size=torch.cuda.device_count(), rank=rank)
torch.distributed.barrier()
print_on_master_only(rank == 0)
print(f"Distributed training on {torch.cuda.device_count()} GPUs, this is rank {rank}, "
"only I can print, but when using print(..., force=True) it will print on all ranks.")
return True, rank, f'cuda:{rank}'
else:
print('Not using distributed')
# will not change any of the behavior of print, but allows putting the force=True in the print calls
print_on_master_only(True)
return False, 0, device
# NOP decorator for python with statements (x = NOP(); with x:)
class NOP():
def __enter__(self):
pass
def __exit__(self, type, value, traceback):
pass
def check_compatibility(dl):
if hasattr(dl, 'num_outputs'):
print('`num_outputs` for the DataLoader is deprecated. It is assumed to be 1 from now on.')
assert dl.num_outputs != 1, "We assume num_outputs to be 1. Instead of the num_ouputs change your loss." \
"We specify the number of classes in the CE loss."
def product_dict(dic):
keys = dic.keys()
vals = dic.values()
for instance in itertools.product(*vals):
yield dict(zip(keys, instance))
def to_tensor(x, device=None):
if isinstance(x, torch.Tensor):
return x.to(device)
else:
return torch.tensor(x,device=device)
printed_already = set()
def print_once(*msgs: str):
msg = ' '.join([repr(m) for m in msgs])
if msg not in printed_already:
print(msg)
printed_already.add(msg)
|