PFNEngineeringConstrainedBO / pfns4bo /priors /condition_on_area_of_opt.py
rosenyu's picture
Upload 529 files
165ee00 verified
import torch
from .prior import Batch
from ..utils import default_device
@torch.no_grad()
def get_batch(batch_size, seq_len, num_features, get_batch, epoch, device=default_device, hyperparameters={}, **kwargs):
"""
This function assumes that every x is in the range [0, 1].
Style shape is (batch_size, 3*num_features) under the assumption that get_batch returns a batch
with shape (seq_len, batch_size, num_features).
The style is build the following way: [prob_of_feature_1_in_range, range_min_of_feature_1, range_max_of_feature_1, ...]
:param batch_size:
:param seq_len:
:param num_features:
:param get_batch:
:param epoch:
:param device:
:param hyperparameters:
:param kwargs:
:return:
"""
max_num_divisions = hyperparameters.get('condition_on_area_max_num_divisions', 5)
maximize = hyperparameters.get('condition_on_area_maximize', True)
remove_correct_from_rand = hyperparameters.get('condition_on_area_remove_correct_from_rand', False)
assert remove_correct_from_rand is False, 'implement it'
batch: Batch = get_batch(batch_size=batch_size, seq_len=seq_len,
num_features=num_features, device=device,
hyperparameters=hyperparameters,
epoch=epoch, **kwargs)
assert batch.style is None
d = batch.x.shape[2]
prob_correct = torch.rand(batch_size, d, device=device)
correct_opt = torch.rand(batch_size, d, device=device) < prob_correct
division_size = torch.randint(1, max_num_divisions + 1, (batch_size, d), device=device, dtype=torch.long)
optima_inds = batch.target_y.argmax(0).squeeze() if maximize else batch.target_y.argmin(0).squeeze() # batch_size
optima = batch.x[optima_inds, torch.arange(batch_size, device=device)] # shape: (batch_size, d)
optima_sections = torch.min(torch.floor(optima * division_size).long(), division_size - 1)
random_sections = torch.min(torch.floor(torch.rand(batch_size, batch.x.shape[2], device=device) * division_size).long(), division_size - 1)
sections = torch.where(correct_opt, optima_sections, random_sections).float() # shape: (batch_size, d)
sections /= division_size.float()
assert tuple(sections.shape) == (batch_size, d)
batch.style = torch.stack([prob_correct, sections, sections + 1 / division_size], 2).view(batch_size, -1) # shape: (batch_size, 3*d)
return batch