Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from botorch.test_functions import Ackley | |
device = torch.device("cpu") | |
dtype = torch.double | |
# | |
# | |
# Ackley6D: 6D objective, 2 constraints | |
# | |
# Reference: | |
# Eriksson D, Poloczek M (2021) Scalable con- | |
# strained bayesian optimization. In: Interna- | |
# tional Conference on Artificial Intelligence and | |
# Statistics, PMLR, pp 730–738 | |
# | |
# | |
def Ackley6D(individuals): | |
assert torch.is_tensor(individuals) and individuals.size(1) == 6, "Input must be an n-by-6 PyTorch tensor." | |
############################################################################# | |
############################################################################# | |
# Set function here: | |
dimm = 6 | |
fun = Ackley(dim=dimm, negate=True).to(dtype=dtype, device=device) | |
fun.bounds[0, :].fill_(-5) | |
fun.bounds[1, :].fill_(10) | |
dim = fun.dim | |
lb, ub = fun.bounds | |
############################################################################# | |
############################################################################# | |
n = individuals.size(0) | |
fx = fun(individuals) | |
fx = fx.reshape((n, 1)) | |
############################################################################# | |
## Constraints | |
gx1 = torch.sum(individuals,1) # sigma(x) <= 0 | |
gx1 = gx1.reshape((n, 1)) | |
gx2 = torch.norm(individuals, p=2, dim=1)-5 # norm_2(x) -3 <= 0 | |
gx2 = gx2.reshape((n, 1)) | |
gx = torch.cat((gx1, gx2), 1) | |
############################################################################# | |
return gx, fx | |
def Ackley6D_Scaling(X): | |
assert torch.is_tensor(X) and X.size(1) == 6, "Input must be an n-by-6 PyTorch tensor." | |
X_scaled = X*15-5 | |
return X_scaled | |