rosenyu's picture
Upload 529 files
165ee00 verified
import torch
import numpy as np
#
#
# CantileverBeam: 10D objective, 11 constraints
#
# Reference:
# Yang XS, Hossein Gandomi A (2012) Bat algo-
# rithm: a novel approach for global engineer-
# ing optimization. Engineering computations
# 29(5):464–483
#
#
def CantileverBeam(individuals):
assert torch.is_tensor(individuals) and individuals.size(1) == 10, "Input must be an n-by-10 PyTorch tensor."
fx = []
gx1 = []
gx2 = []
gx3 = []
gx4 = []
gx5 = []
gx6 = []
gx7 = []
gx8 = []
gx9 = []
gx10 = []
gx11 = []
n = individuals.size(0)
for i in range(n):
x = individuals[i,:]
x1 = x[0]
x2 = x[1]
x3 = x[2]
x4 = x[3]
x5 = x[4]
x6 = x[5]
x7 = x[6]
x8 = x[7]
x9 = x[8]
x10 = x[9]
P = 50000
E = 2*107
L = 100
## Negative sign to make it a maximization problem
test_function = - ( x1*x6*L + x2*x7*L + x3*x8*L + x4*x9*L + x5*x10*L )
fx.append(test_function)
## Calculate constraints terms
g1 = 600 * P / (x5*x10*x10) - 14000
g2 = 6 * P * (L*2) / (x4*x9*x9) - 14000
g3 = 6 * P * (L*3) / (x3*x8*x8) - 14000
g4 = 6 * P * (L*4) / (x2*x7*x7) - 14000
g5 = 6 * P * (L*5) / (x1*x6*x6) - 14000
g6 = P* L**3 * (1/L + 7/L + 19/L + 37/L + 61/L) / (3*E) -2.7
g7 = x10/x5 - 20
g8 = x9/x4 - 20
g9 = x8/x3 - 20
g10 = x7/x2 - 20
g11 = x6/x1 - 20
gx1.append( g1 )
gx2.append( g2 )
gx3.append( g3 )
gx4.append( g4 )
gx5.append( g5 )
gx6.append( g6 )
gx7.append( g7 )
gx8.append( g8 )
gx9.append( g9 )
gx10.append( g10 )
gx11.append( g11 )
fx = torch.tensor(fx)
fx = torch.reshape(fx, (len(fx),1))
gx1 = torch.tensor(gx1)
gx1 = gx1.reshape((n, 1))
gx2 = torch.tensor(gx2)
gx2 = gx2.reshape((n, 1))
gx3 = torch.tensor(gx3)
gx3 = gx3.reshape((n, 1))
gx4 = torch.tensor(gx4)
gx4 = gx4.reshape((n, 1))
gx5 = torch.tensor(gx5)
gx5 = gx1.reshape((n, 1))
gx6 = torch.tensor(gx6)
gx6 = gx2.reshape((n, 1))
gx7 = torch.tensor(gx7)
gx7 = gx3.reshape((n, 1))
gx8 = torch.tensor(gx8)
gx8 = gx4.reshape((n, 1))
gx9 = torch.tensor(gx9)
gx9 = gx4.reshape((n, 1))
gx10 = torch.tensor(gx10)
gx10 = gx4.reshape((n, 1))
gx11 = torch.tensor(gx11)
gx11 = gx4.reshape((n, 1))
gx = torch.cat((gx1, gx2, gx3, gx4, gx5, gx6, gx7, gx8, gx9, gx10, gx11), 1)
return gx, fx
def CantileverBeam_Scaling(X):
assert torch.is_tensor(X) and X.size(1) == 10, "Input must be an n-by-10 PyTorch tensor."
x1 = (X[:,0] * (5-1) + 1).reshape(X.shape[0],1)
x2 = (X[:,1] * (5-1) + 1).reshape(X.shape[0],1)
x3 = (X[:,2] * (5-1) + 1).reshape(X.shape[0],1)
x4 = (X[:,3] * (5-1) + 1).reshape(X.shape[0],1)
x5 = (X[:,4] * (5-1) + 1).reshape(X.shape[0],1)
x6 = (X[:,5] * (65-30) + 30).reshape(X.shape[0],1)
x7 = (X[:,6] * (65-30) + 30).reshape(X.shape[0],1)
x8 = (X[:,7] * (65-30) + 30).reshape(X.shape[0],1)
x9 = (X[:,8] * (65-30) + 30).reshape(X.shape[0],1)
x10 = (X[:,9] * (65-30) + 30).reshape(X.shape[0],1)
X_scaled = torch.cat((x1, x2, x3, x4, x5, x6, x7, x8, x9, x10), dim=1)
return X_scaled