Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from botorch.test_functions.synthetic import Rosenbrock, Levy, DixonPrice | |
device = torch.device("cpu") | |
dtype = torch.double | |
def RosenbrockND2(individuals): | |
# assert torch.is_tensor(individuals) and individuals.size(1) == 10, "Input must be an n-by-10 PyTorch tensor." | |
############################################################################# | |
############################################################################# | |
# Set function here: | |
dimm = individuals.shape[1] | |
Rosenbrockfun = Rosenbrock(dim=dimm, negate=True) | |
Rosenbrockfun.bounds[0, :].fill_(-3.0) | |
Rosenbrockfun.bounds[1, :].fill_(5.0) | |
fx = Rosenbrockfun(individuals) | |
fx = fx.reshape(individuals.shape[0],1) | |
Levyfun = Levy(dim=dimm, negate=False) | |
Levyfun.bounds[0, :].fill_(-3.0) | |
Levyfun.bounds[1, :].fill_(5.0) | |
DixonPricefun = DixonPrice(dim=dimm, negate=False) | |
DixonPricefun.bounds[0, :].fill_(-3.0) | |
DixonPricefun.bounds[1, :].fill_(5.0) | |
G1 = Levyfun(individuals) -1e3 | |
G2 = DixonPricefun(individuals) -4e7 | |
gx = torch.cat((G1.reshape(individuals.shape[0],1), G2.reshape(individuals.shape[0],1)), 1) | |
return gx, fx | |
def RosenbrockND2_Scaling(X): | |
# assert torch.is_tensor(X) and X.size(1) == 10, "Input must be an n-by-10 PyTorch tensor." | |
X_scaled = X*8-3 | |
return X_scaled | |