Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from test_functions.Ackley10D import *
|
6 |
+
from test_functions.Ackley2D import *
|
7 |
+
from test_functions.Ackley6D import *
|
8 |
+
from test_functions.HeatExchanger import *
|
9 |
+
from test_functions.CantileverBeam import *
|
10 |
+
from test_functions.Car import *
|
11 |
+
from test_functions.CompressionSpring import *
|
12 |
+
from test_functions.GKXWC1 import *
|
13 |
+
from test_functions.GKXWC2 import *
|
14 |
+
from test_functions.HeatExchanger import *
|
15 |
+
from test_functions.JLH1 import *
|
16 |
+
from test_functions.JLH2 import *
|
17 |
+
from test_functions.KeaneBump import *
|
18 |
+
from test_functions.GKXWC1 import *
|
19 |
+
from test_functions.GKXWC2 import *
|
20 |
+
from test_functions.PressureVessel import *
|
21 |
+
from test_functions.ReinforcedConcreteBeam import *
|
22 |
+
from test_functions.SpeedReducer import *
|
23 |
+
from test_functions.ThreeTruss import *
|
24 |
+
from test_functions.WeldedBeam import *
|
25 |
+
# Import other objective functions as needed
|
26 |
+
import time
|
27 |
+
|
28 |
+
from Rosen_PFN4BO import *
|
29 |
+
from PIL import Image
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
def s(input_string):
|
46 |
+
return input_string
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
def optimize(objective_function, iteration_input, progress=gr.Progress()):
|
52 |
+
|
53 |
+
print(objective_function)
|
54 |
+
|
55 |
+
# Variable setup
|
56 |
+
Current_BEST = torch.tensor( -1e10 ) # Some arbitrary very small number
|
57 |
+
Prev_BEST = torch.tensor( -1e10 )
|
58 |
+
|
59 |
+
if objective_function=="CantileverBeam.png":
|
60 |
+
Current_BEST = torch.tensor( -82500 ) # Some arbitrary very small number
|
61 |
+
Prev_BEST = torch.tensor( -82500 )
|
62 |
+
elif objective_function=="CompressionSpring.png":
|
63 |
+
Current_BEST = torch.tensor( -8 ) # Some arbitrary very small number
|
64 |
+
Prev_BEST = torch.tensor( -8 )
|
65 |
+
elif objective_function=="HeatExchanger.png":
|
66 |
+
Current_BEST = torch.tensor( -30000 ) # Some arbitrary very small number
|
67 |
+
Prev_BEST = torch.tensor( -30000 )
|
68 |
+
elif objective_function=="ThreeTruss.png":
|
69 |
+
Current_BEST = torch.tensor( -300 ) # Some arbitrary very small number
|
70 |
+
Prev_BEST = torch.tensor( -300 )
|
71 |
+
elif objective_function=="Reinforcement.png":
|
72 |
+
Current_BEST = torch.tensor( -440 ) # Some arbitrary very small number
|
73 |
+
Prev_BEST = torch.tensor( -440 )
|
74 |
+
elif objective_function=="PressureVessel.png":
|
75 |
+
Current_BEST = torch.tensor( -40000 ) # Some arbitrary very small number
|
76 |
+
Prev_BEST = torch.tensor( -40000 )
|
77 |
+
elif objective_function=="SpeedReducer.png":
|
78 |
+
Current_BEST = torch.tensor( -3200 ) # Some arbitrary very small number
|
79 |
+
Prev_BEST = torch.tensor( -3200 )
|
80 |
+
elif objective_function=="WeldedBeam.png":
|
81 |
+
Current_BEST = torch.tensor( -35 ) # Some arbitrary very small number
|
82 |
+
Prev_BEST = torch.tensor( -35 )
|
83 |
+
elif objective_function=="Car.png":
|
84 |
+
Current_BEST = torch.tensor( -35 ) # Some arbitrary very small number
|
85 |
+
Prev_BEST = torch.tensor( -35 )
|
86 |
+
|
87 |
+
# Initial random samples
|
88 |
+
# print(objective_functions)
|
89 |
+
trained_X = torch.rand(20, objective_functions[objective_function]['dim'])
|
90 |
+
|
91 |
+
# Scale it to the domain of interest using the selected function
|
92 |
+
# print(objective_function)
|
93 |
+
X_Scaled = objective_functions[objective_function]['scaling'](trained_X)
|
94 |
+
|
95 |
+
# Get the constraints and objective
|
96 |
+
trained_gx, trained_Y = objective_functions[objective_function]['function'](X_Scaled)
|
97 |
+
|
98 |
+
# Convergence list to store best values
|
99 |
+
convergence = []
|
100 |
+
time_conv = []
|
101 |
+
|
102 |
+
START_TIME = time.time()
|
103 |
+
|
104 |
+
|
105 |
+
# with gr.Progress(track_tqdm=True) as progress:
|
106 |
+
|
107 |
+
|
108 |
+
# Optimization Loop
|
109 |
+
for ii in progress.tqdm(range(iteration_input)): # Example with 100 iterations
|
110 |
+
|
111 |
+
# (0) Get the updated data for this iteration
|
112 |
+
X_scaled = objective_functions[objective_function]['scaling'](trained_X)
|
113 |
+
trained_gx, trained_Y = objective_functions[objective_function]['function'](X_scaled)
|
114 |
+
|
115 |
+
# (1) Randomly sample Xpen
|
116 |
+
X_pen = torch.rand(1000,trained_X.shape[1])
|
117 |
+
|
118 |
+
# (2) PFN inference phase with EI
|
119 |
+
default_model = 'final_models/model_hebo_morebudget_9_unused_features_3.pt'
|
120 |
+
|
121 |
+
ei, p_feas = Rosen_PFN_Parallel(default_model,
|
122 |
+
trained_X,
|
123 |
+
trained_Y,
|
124 |
+
trained_gx,
|
125 |
+
X_pen,
|
126 |
+
'power',
|
127 |
+
'ei'
|
128 |
+
)
|
129 |
+
|
130 |
+
# Calculating CEI
|
131 |
+
CEI = ei
|
132 |
+
for jj in range(p_feas.shape[1]):
|
133 |
+
CEI = CEI*p_feas[:,jj]
|
134 |
+
|
135 |
+
# (4) Get the next search value
|
136 |
+
rec_idx = torch.argmax(CEI)
|
137 |
+
best_candidate = X_pen[rec_idx,:].unsqueeze(0)
|
138 |
+
|
139 |
+
# (5) Append the next search point
|
140 |
+
trained_X = torch.cat([trained_X, best_candidate])
|
141 |
+
|
142 |
+
|
143 |
+
################################################################################
|
144 |
+
# This is just for visualizing the best value.
|
145 |
+
# This section can be remove for pure optimization purpose
|
146 |
+
Current_X = objective_functions[objective_function]['scaling'](trained_X)
|
147 |
+
Current_GX, Current_Y = objective_functions[objective_function]['function'](Current_X)
|
148 |
+
if ((Current_GX<=0).all(dim=1)).any():
|
149 |
+
Current_BEST = torch.max(Current_Y[(Current_GX<=0).all(dim=1)])
|
150 |
+
else:
|
151 |
+
Current_BEST = Prev_BEST
|
152 |
+
################################################################################
|
153 |
+
|
154 |
+
# (ii) Convergence tracking (assuming the best Y is to be maximized)
|
155 |
+
# if Current_BEST != -1e10:
|
156 |
+
print(Current_BEST)
|
157 |
+
print(convergence)
|
158 |
+
convergence.append(Current_BEST.abs())
|
159 |
+
time_conv.append(time.time() - START_TIME)
|
160 |
+
|
161 |
+
# Timing
|
162 |
+
END_TIME = time.time()
|
163 |
+
TOTAL_TIME = END_TIME - START_TIME
|
164 |
+
|
165 |
+
# Website visualization
|
166 |
+
# (i) Radar chart for trained_X
|
167 |
+
radar_chart = None
|
168 |
+
# radar_chart = create_radar_chart(X_scaled)
|
169 |
+
# (ii) Convergence tracking (assuming the best Y is to be maximized)
|
170 |
+
convergence_plot = create_convergence_plot(objective_function, iteration_input,
|
171 |
+
time_conv,
|
172 |
+
convergence, TOTAL_TIME)
|
173 |
+
|
174 |
+
|
175 |
+
return convergence_plot
|
176 |
+
# return radar_chart, convergence_plot
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
def create_radar_chart(X_scaled):
|
187 |
+
fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))
|
188 |
+
labels = [f'x{i+1}' for i in range(X_scaled.shape[1])]
|
189 |
+
values = X_scaled.mean(dim=0).numpy()
|
190 |
+
|
191 |
+
num_vars = len(labels)
|
192 |
+
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
|
193 |
+
values = np.concatenate((values, [values[0]]))
|
194 |
+
angles += angles[:1]
|
195 |
+
|
196 |
+
ax.fill(angles, values, color='green', alpha=0.25)
|
197 |
+
ax.plot(angles, values, color='green', linewidth=2)
|
198 |
+
ax.set_yticklabels([])
|
199 |
+
ax.set_xticks(angles[:-1])
|
200 |
+
# ax.set_xticklabels(labels)
|
201 |
+
ax.set_xticklabels([f'{label}\n({value:.2f})' for label, value in zip(labels, values[:-1])]) # Show values
|
202 |
+
ax.set_title("Selected Design", size=15, color='black', y=1.1)
|
203 |
+
|
204 |
+
plt.close(fig)
|
205 |
+
return fig
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
def create_convergence_plot(objective_function, iteration_input, time_conv, convergence, TOTAL_TIME):
|
214 |
+
fig, ax = plt.subplots()
|
215 |
+
|
216 |
+
# Realtime optimization data
|
217 |
+
ax.plot(time_conv, convergence, '^-', label='PFN-CBO (Realtime)' )
|
218 |
+
|
219 |
+
# Stored GP data
|
220 |
+
if objective_function=="CantileverBeam.png":
|
221 |
+
GP_TIME = torch.load('CantileverBeam_CEI_Avg_Time.pt')
|
222 |
+
GP_OBJ = torch.load('CantileverBeam_CEI_Avg_Obj.pt')
|
223 |
+
|
224 |
+
elif objective_function=="CompressionSpring.png":
|
225 |
+
GP_TIME = torch.load('CompressionSpring_CEI_Avg_Time.pt')
|
226 |
+
GP_OBJ = torch.load('CompressionSpring_CEI_Avg_Obj.pt')
|
227 |
+
|
228 |
+
elif objective_function=="HeatExchanger.png":
|
229 |
+
GP_TIME = torch.load('HeatExchanger_CEI_Avg_Time.pt')
|
230 |
+
GP_OBJ = torch.load('HeatExchanger_CEI_Avg_Obj.pt')
|
231 |
+
|
232 |
+
elif objective_function=="ThreeTruss.png":
|
233 |
+
GP_TIME = torch.load('ThreeTruss_CEI_Avg_Time.pt')
|
234 |
+
GP_OBJ = torch.load('ThreeTruss_CEI_Avg_Obj.pt')
|
235 |
+
|
236 |
+
elif objective_function=="Reinforcement.png":
|
237 |
+
GP_TIME = torch.load('ReinforcedConcreteBeam_CEI_Avg_Time.pt')
|
238 |
+
GP_OBJ = torch.load('ReinforcedConcreteBeam_CEI_Avg_Obj.pt')
|
239 |
+
|
240 |
+
elif objective_function=="PressureVessel.png":
|
241 |
+
GP_TIME = torch.load('PressureVessel_CEI_Avg_Time.pt')
|
242 |
+
GP_OBJ = torch.load('PressureVessel_CEI_Avg_Obj.pt')
|
243 |
+
|
244 |
+
elif objective_function=="SpeedReducer.png":
|
245 |
+
GP_TIME = torch.load('SpeedReducer_CEI_Avg_Time.pt')
|
246 |
+
GP_OBJ = torch.load('SpeedReducer_CEI_Avg_Obj.pt')
|
247 |
+
|
248 |
+
elif objective_function=="WeldedBeam.png":
|
249 |
+
GP_TIME = torch.load('WeldedBeam_CEI_Avg_Time.pt')
|
250 |
+
GP_OBJ = torch.load('WeldedBeam_CEI_Avg_Obj.pt')
|
251 |
+
|
252 |
+
elif objective_function=="Car.png":
|
253 |
+
GP_TIME = torch.load('Car_CEI_Avg_Time.pt')
|
254 |
+
GP_OBJ = torch.load('Car_CEI_Avg_Obj.pt')
|
255 |
+
|
256 |
+
# Plot GP data
|
257 |
+
ax.plot(GP_TIME[:iteration_input], GP_OBJ[:iteration_input], '^-', label='GP-CBO (Data)' )
|
258 |
+
|
259 |
+
|
260 |
+
ax.set_xlabel('Time (seconds)')
|
261 |
+
ax.set_ylabel('Objective Value')
|
262 |
+
ax.set_title('Convergence Plot for {t} iterations'.format(t=iteration_input))
|
263 |
+
# ax.legend()
|
264 |
+
|
265 |
+
if objective_function=="CantileverBeam.png":
|
266 |
+
ax.axhline(y=50000, color='red', linestyle='--', label='Optimal Value')
|
267 |
+
|
268 |
+
elif objective_function=="CompressionSpring.png":
|
269 |
+
ax.axhline(y=0, color='red', linestyle='--', label='Optimal Value')
|
270 |
+
|
271 |
+
elif objective_function=="HeatExchanger.png":
|
272 |
+
ax.axhline(y=4700, color='red', linestyle='--', label='Optimal Value')
|
273 |
+
|
274 |
+
elif objective_function=="ThreeTruss.png":
|
275 |
+
ax.axhline(y=262, color='red', linestyle='--', label='Optimal Value')
|
276 |
+
|
277 |
+
elif objective_function=="Reinforcement.png":
|
278 |
+
ax.axhline(y=355, color='red', linestyle='--', label='Optimal Value')
|
279 |
+
|
280 |
+
elif objective_function=="PressureVessel.png":
|
281 |
+
ax.axhline(y=5000, color='red', linestyle='--', label='Optimal Value')
|
282 |
+
|
283 |
+
elif objective_function=="SpeedReducer.png":
|
284 |
+
ax.axhline(y=2650, color='red', linestyle='--', label='Optimal Value')
|
285 |
+
|
286 |
+
elif objective_function=="WeldedBeam.png":
|
287 |
+
ax.axhline(y=6, color='red', linestyle='--', label='Optimal Value')
|
288 |
+
|
289 |
+
elif objective_function=="Car.png":
|
290 |
+
ax.axhline(y=25, color='red', linestyle='--', label='Optimal Value')
|
291 |
+
|
292 |
+
|
293 |
+
ax.legend(loc='best')
|
294 |
+
# ax.legend(loc='lower left')
|
295 |
+
|
296 |
+
|
297 |
+
# Add text to the top right corner of the plot
|
298 |
+
if len(convergence) == 0:
|
299 |
+
ax.text(0.5, 0.5, 'No Feasible Design Found', transform=ax.transAxes, fontsize=12,
|
300 |
+
verticalalignment='top', horizontalalignment='right')
|
301 |
+
|
302 |
+
|
303 |
+
plt.close(fig)
|
304 |
+
return fig
|
305 |
+
|
306 |
+
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
# Define available objective functions
|
312 |
+
objective_functions = {
|
313 |
+
# "ThreeTruss.png": {"image": "ThreeTruss.png",
|
314 |
+
# "function": ThreeTruss,
|
315 |
+
# "scaling": ThreeTruss_Scaling,
|
316 |
+
# "dim": 2},
|
317 |
+
"CompressionSpring.png": {"image": "CompressionSpring.png",
|
318 |
+
"function": CompressionSpring,
|
319 |
+
"scaling": CompressionSpring_Scaling,
|
320 |
+
"dim": 3},
|
321 |
+
"Reinforcement.png": {"image": "Reinforcement.png", "function": ReinforcedConcreteBeam, "scaling": ReinforcedConcreteBeam_Scaling, "dim": 3},
|
322 |
+
"PressureVessel.png": {"image": "PressureVessel.png", "function": PressureVessel, "scaling": PressureVessel_Scaling, "dim": 4},
|
323 |
+
"SpeedReducer.png": {"image": "SpeedReducer.png", "function": SpeedReducer, "scaling": SpeedReducer_Scaling, "dim": 7},
|
324 |
+
"WeldedBeam.png": {"image": "WeldedBeam.png", "function": WeldedBeam, "scaling": WeldedBeam_Scaling, "dim": 4},
|
325 |
+
"HeatExchanger.png": {"image": "HeatExchanger.png", "function": HeatExchanger, "scaling": HeatExchanger_Scaling, "dim": 8},
|
326 |
+
"CantileverBeam.png": {"image": "CantileverBeam.png", "function": CantileverBeam, "scaling": CantileverBeam_Scaling, "dim": 10},
|
327 |
+
"Car.png": {"image": "Car.png", "function": Car, "scaling": Car_Scaling, "dim": 11},
|
328 |
+
}
|
329 |
+
|
330 |
+
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
# Extract just the image paths for the gallery
|
354 |
+
image_paths = [key for key in objective_functions]
|
355 |
+
|
356 |
+
|
357 |
+
def submit_action(objective_function_choices, iteration_input):
|
358 |
+
# print(iteration_input)
|
359 |
+
# print(len(objective_function_choices))
|
360 |
+
# print(objective_functions[objective_function_choices]['function'])
|
361 |
+
if len(objective_function_choices)>0:
|
362 |
+
selected_function = objective_functions[objective_function_choices]['function']
|
363 |
+
return optimize(objective_function_choices, iteration_input)
|
364 |
+
return None
|
365 |
+
|
366 |
+
# Function to clear the output
|
367 |
+
def clear_output():
|
368 |
+
# print(gallery.selected_index)
|
369 |
+
|
370 |
+
return gr.update(value=[], selected=None), None, 15, gr.Markdown(""), 'Test_formulation_default.png'
|
371 |
+
|
372 |
+
def reset_gallery():
|
373 |
+
return gr.update(value=image_paths)
|
374 |
+
|
375 |
+
|
376 |
+
with gr.Blocks() as demo:
|
377 |
+
# Centered Title and Description using gr.HTML
|
378 |
+
gr.HTML(
|
379 |
+
"""
|
380 |
+
<div style="text-align: center;">
|
381 |
+
<h1>Pre-trained Transformer for Constrained Bayesian Optimization</h1>
|
382 |
+
<h4>Paper: <a href="https://arxiv.org/abs/2404.04495">
|
383 |
+
Fast and Accurate Bayesian Optimization with Pre-trained Transformers for Constrained Engineering Problems</a>
|
384 |
+
</h4>
|
385 |
+
|
386 |
+
<p style="text-align: left;">This is a demo for Bayesian Optimization using PFN (Prior-Data Fitted Networks).
|
387 |
+
Select your objective function by clicking on one of the check boxes below, then enter the iteration number to run the optimization process.
|
388 |
+
The results will be visualized in the radar chart and convergence plot.</p>
|
389 |
+
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
</div>
|
394 |
+
"""
|
395 |
+
)
|
396 |
+
|
397 |
+
|
398 |
+
with gr.Row():
|
399 |
+
|
400 |
+
|
401 |
+
with gr.Column(variant='compact'):
|
402 |
+
# gr.Markdown("# Inputs: ")
|
403 |
+
|
404 |
+
with gr.Row():
|
405 |
+
gr.Markdown("## Select a problem (objective): ")
|
406 |
+
img_key = gr.Markdown(value="", visible=False)
|
407 |
+
|
408 |
+
gallery = gr.Gallery(value=image_paths, label="Objective Functions",
|
409 |
+
# height = 450,
|
410 |
+
object_fit='contain',
|
411 |
+
columns=3, rows=3, elem_id="gallery")
|
412 |
+
|
413 |
+
gr.Markdown("## Enter iteration Number: ")
|
414 |
+
iteration_input = gr.Slider(label="Iterations:", minimum=15, maximum=50, step=1, value=15)
|
415 |
+
|
416 |
+
|
417 |
+
# Row for the Clear and Submit buttons
|
418 |
+
with gr.Row():
|
419 |
+
clear_button = gr.Button("Clear")
|
420 |
+
submit_button = gr.Button("Submit", variant="primary")
|
421 |
+
|
422 |
+
with gr.Column():
|
423 |
+
# gr.Markdown("# Outputs: ")
|
424 |
+
gr.Markdown("## Problem Formulation: ")
|
425 |
+
formulation = gr.Image(value='Formulation_default.png', height=150)
|
426 |
+
gr.Markdown("## Results: ")
|
427 |
+
gr.Markdown("The graph will plot the best observed data v.s. the time for the algorithm to run up until the iteration. The PFN-CBO shows the result of the realtime optimization running in the backend while the GP-CBO shows the stored data from our previous experiments since running GP-CBO will take longer time.")
|
428 |
+
convergence_plot = gr.Plot(label="Convergence Plot")
|
429 |
+
|
430 |
+
|
431 |
+
|
432 |
+
def handle_select(evt: gr.SelectData):
|
433 |
+
selected_image = evt.value
|
434 |
+
key = evt.value['image']['orig_name']
|
435 |
+
formulation = 'Test_formulation.png'
|
436 |
+
print('here')
|
437 |
+
print(key)
|
438 |
+
|
439 |
+
return key, formulation
|
440 |
+
|
441 |
+
gallery.select(fn=handle_select, inputs=None, outputs=[img_key, formulation])
|
442 |
+
|
443 |
+
|
444 |
+
|
445 |
+
submit_button.click(
|
446 |
+
submit_action,
|
447 |
+
inputs=[img_key, iteration_input],
|
448 |
+
# outputs= [radar_plot, convergence_plot],
|
449 |
+
outputs= convergence_plot,
|
450 |
+
|
451 |
+
# progress=True # Enable progress tracking
|
452 |
+
|
453 |
+
)
|
454 |
+
|
455 |
+
clear_button.click(
|
456 |
+
clear_output,
|
457 |
+
inputs=None,
|
458 |
+
outputs=[gallery, convergence_plot, iteration_input, img_key, formulation]
|
459 |
+
).then(
|
460 |
+
# Step 2: Reset the gallery to the original list
|
461 |
+
reset_gallery,
|
462 |
+
inputs=None,
|
463 |
+
outputs=gallery
|
464 |
+
)
|
465 |
+
|
466 |
+
|
467 |
+
|
468 |
+
demo.launch()
|