import torch import numpy as np # # # HeatExchanger: 8D objective, 6 constraints # # Reference: # Yang XS, Hossein Gandomi A (2012) Bat algo- # rithm: a novel approach for global engineer- # ing optimization. Engineering computations # 29(5):464–483 # # def HeatExchanger(individuals): assert torch.is_tensor(individuals) and individuals.size(1) == 8, "Input must be an n-by-8 PyTorch tensor." fx = [] gx1 = [] gx2 = [] gx3 = [] gx4 = [] gx5 = [] gx6 = [] gx7 = [] gx8 = [] gx9 = [] gx10 = [] gx11 = [] n = individuals.size(0) for i in range(n): x = individuals[i,:] x1 = x[0] x2 = x[1] x3 = x[2] x4 = x[3] x5 = x[4] x6 = x[5] x7 = x[6] x8 = x[7] ## Negative sign to make it a maximization problem test_function = - ( x1+x2+x3 ) fx.append(test_function) ## Calculate constraints terms g1 = 0.0025 * (x4+x6) - 1 g2 = 0.0025 * (x5 + x7 - x4) - 1 g3 = 0.01 *(x8-x5) - 1 g4 = 833.33252*x4 + 100*x1 - x1*x6 - 83333.333 g5 = 1250*x5 + x2*x4 - x2*x7 - 125*x4 g6 = x3*x5 - 2500*x5 - x3*x8 + 125*10000 gx1.append( g1 ) gx2.append( g2 ) gx3.append( g3 ) gx4.append( g4 ) gx5.append( g5 ) gx6.append( g6 ) fx = torch.tensor(fx) fx = torch.reshape(fx, (len(fx),1)) gx1 = torch.tensor(gx1) gx1 = gx1.reshape((n, 1)) gx2 = torch.tensor(gx2) gx2 = gx2.reshape((n, 1)) gx3 = torch.tensor(gx3) gx3 = gx3.reshape((n, 1)) gx4 = torch.tensor(gx4) gx4 = gx4.reshape((n, 1)) gx5 = torch.tensor(gx5) gx5 = gx1.reshape((n, 1)) gx6 = torch.tensor(gx6) gx6 = gx2.reshape((n, 1)) gx = torch.cat((gx1, gx2, gx3, gx4, gx5, gx6), 1) return gx, fx def HeatExchanger_Scaling(X): assert torch.is_tensor(X) and X.size(1) == 8, "Input must be an n-by-8 PyTorch tensor." x1 = (X[:,0] * (10000-100) + 100).reshape(X.shape[0],1) x2 = (X[:,1] * (10000-1000) + 1000).reshape(X.shape[0],1) x3 = (X[:,2] * (10000-1000) + 1000).reshape(X.shape[0],1) x4 = (X[:,3] * (1000-10) + 10).reshape(X.shape[0],1) x5 = (X[:,4] * (1000-10) + 10).reshape(X.shape[0],1) x6 = (X[:,5] * (1000-10) + 10).reshape(X.shape[0],1) x7 = (X[:,6] * (1000-10) + 10).reshape(X.shape[0],1) x8 = (X[:,7] * (1000-10) + 10).reshape(X.shape[0],1) X_scaled = torch.cat((x1, x2, x3, x4, x5, x6, x7, x8), dim=1) return X_scaled