from typing import List import torch import utils from .prior import Batch from .utils import get_batch_to_dataloader from ..utils import default_device def get_batch(batch_size, seq_len, num_features, device=default_device , hyperparameters=None, batch_size_per_gp_sample=None, **kwargs): batch_size_per_gp_sample = batch_size_per_gp_sample or (min(64, batch_size)) num_models = batch_size // batch_size_per_gp_sample assert num_models * batch_size_per_gp_sample == batch_size, f'Batch size ({batch_size}) not divisible by batch_size_per_gp_sample ({batch_size_per_gp_sample})' args = {'device': device, 'seq_len': seq_len, 'num_features': num_features, 'batch_size': batch_size_per_gp_sample} prior_bag_priors_get_batch = hyperparameters['prior_bag_get_batch'] prior_bag_priors_p = [1.0] + [hyperparameters[f'prior_bag_exp_weights_{i}'] for i in range(1, len(prior_bag_priors_get_batch))] weights = torch.tensor(prior_bag_priors_p, dtype=torch.float) # create a tensor of weights batch_assignments = torch.multinomial(torch.softmax(weights, 0), num_models, replacement=True).numpy() if 'verbose' in hyperparameters and hyperparameters['verbose']: print('PRIOR_BAG:', weights, batch_assignments, num_models, batch_size_per_gp_sample, batch_size) sample: List[Batch] = \ [prior_bag_priors_get_batch[int(prior_idx)](hyperparameters=hyperparameters, **args, **kwargs) for prior_idx in batch_assignments] def merge(sample, k): x = [getattr(x_,k) for x_ in sample] if torch.is_tensor(x[0]): return torch.cat(x, 1).detach() else: return [*x] utils.print_once('prior bag, merging attributes', [s.other_filled_attributes([]) for s in sample]) sample = {k: merge(sample, k) for k in sample[0].other_filled_attributes([])} if hyperparameters.get('verbose'): print({k: v.shape for k,v in sample.items()}) return Batch(**sample) DataLoader = get_batch_to_dataloader(get_batch)