import torch import numpy as np from botorch.test_functions.synthetic import Branin device = torch.device("cpu") dtype = torch.double def Branin2DEmbedd(X_input): # assert torch.is_tensor(X) and X.size(1) == 2, "Input must be an n-by-2 PyTorch tensor." # Set function here: X = X_input[:,[1,2]] n = X.size(0) dimm = 2 fun = Branin(negate=True) fun.bounds[0, 0].fill_(-5.0) fun.bounds[1, 0].fill_(10.0) fun.bounds[0, 1].fill_(0.0) fun.bounds[1, 1].fill_(15.0) dim = fun.dim lb, ub = fun.bounds fx = fun(X) fx = fx.reshape((n, 1)) gx = 0 return gx, fx def Branin2DEmbedd_Scaling(X): X_scaled = X.clone() X_scaled[:,1] = X_scaled[:,1]*15-5 X_scaled[:,2] = X_scaled[:,2]*15 return X_scaled