import torch import numpy as np # # JLH2: 2D objective, 1 constraints # # # Reference: # Jetton C, Li C, Hoyle C (2023) Constrained # bayesian optimization methods using regres- # sion and classification gaussian processes as # constraints. In: International Design Engi- # neering Technical Conferences and Computers # and Information in Engineering Conference, # American Society of Mechanical Engineers, p # V03BT03A033 # # def JLH2(individuals): assert torch.is_tensor(individuals) and individuals.size(1) == 2, "Input must be an n-by-2 PyTorch tensor." fx = [] gx = [] for x in individuals: ## Negative sign to make it a maximization problem test_function = - ( np.cos(2*x[0])*np.cos(x[1]) + np.sin(x[0]) ) fx.append(test_function) gx.append( ((x[0]+5)**2)/4 + (x[1]**2)/100 -2.5 ) fx = torch.tensor(fx) fx = torch.reshape(fx, (len(fx),1)) gx = torch.tensor(gx) gx = torch.reshape(gx, (len(gx),1)) return gx, fx def JLH2_Scaling(X): assert torch.is_tensor(X) and X.size(1) == 2, "Input must be an n-by-2 PyTorch tensor." # X = individuals X1 = X[:,0].reshape(X.size(0),1) X1 = X1*5-5 X2 = X[:,1].reshape(X.size(0),1) X2 = X2*10-5 X_scaled = torch.tensor(np.concatenate((X1,X2), axis=1)) return X_scaled