import torch import numpy as np # # # SpeedReducer: 7D objective, 9 constraints # # Reference: # Yang XS, Hossein Gandomi A (2012) Bat algo- # rithm: a novel approach for global engineer- # ing optimization. Engineering computations # 29(5):464–483 # # def SpeedReducer(individuals): assert torch.is_tensor(individuals) and individuals.size(1) == 7, "Input must be an n-by-7 PyTorch tensor." fx = [] gx1 = [] gx2 = [] gx3 = [] gx4 = [] gx5 = [] gx6 = [] gx7 = [] gx8 = [] gx9 = [] gx10 = [] gx11 = [] n = individuals.size(0) for i in range(n): x = individuals[i,:] b = x[0] m = x[1] z = x[2] L1 = x[3] L2 = x[4] d1 = x[5] d2 = x[6] C1 = 0.7854*b*m*m C2 = 3.3333*z*z + 14.9334*z - 43.0934 C3 = 1.508*b*(d1*d1 + d2*d2) C4 = 7.4777*(d1*d1*d1 + d2*d2*d2) C5 = 0.7854*(L1*d1*d1 + L2*d2*d2) ## Negative sign to make it a maximization problem test_function = - ( 0.7854*b*m*m * (3.3333*z*z + 14.9334*z - 43.0934) - 1.508*b*(d1*d1 + d2*d2) + 7.4777*(d1*d1*d1 + d2*d2*d2) + 0.7854*(L1*d1*d1 + L2*d2*d2) ) fx.append(test_function) ## Calculate constraints terms g1 = 27/(b*m*m*z) - 1 g2 = 397.5/(b*m*m*z*z) - 1 g3 = 1.93*L1**3 /(m*z *d1**4) - 1 g4 = 1.93*L2**3 /(m*z *d2**4) - 1 g5 = np.sqrt( (745*L1/(m*z))**2 + 1.69*1e6 ) / (110*d1**3) -1 g6 = np.sqrt( (745*L2/(m*z))**2 + 157.5*1e6 ) / (85*d2**3) -1 g7 = m*z/40 - 1 g8 = 5*m/(b) - 1 g9 = b/(12*m) -1 gx1.append( g1 ) gx2.append( g2 ) gx3.append( g3 ) gx4.append( g4 ) gx5.append( g5 ) gx6.append( g6 ) gx7.append( g7 ) gx8.append( g8 ) gx9.append( g9 ) fx = torch.tensor(fx) fx = torch.reshape(fx, (len(fx),1)) gx1 = torch.tensor(gx1) gx1 = gx1.reshape((n, 1)) gx2 = torch.tensor(gx2) gx2 = gx2.reshape((n, 1)) gx3 = torch.tensor(gx3) gx3 = gx3.reshape((n, 1)) gx4 = torch.tensor(gx4) gx4 = gx4.reshape((n, 1)) gx5 = torch.tensor(gx5) gx5 = gx1.reshape((n, 1)) gx6 = torch.tensor(gx6) gx6 = gx2.reshape((n, 1)) gx7 = torch.tensor(gx7) gx7 = gx3.reshape((n, 1)) gx8 = torch.tensor(gx8) gx8 = gx4.reshape((n, 1)) gx9 = torch.tensor(gx9) gx9 = gx4.reshape((n, 1)) gx = torch.cat((gx1, gx2, gx3, gx4, gx5, gx6, gx7, gx8, gx9), 1) return gx, fx def SpeedReducer_Scaling(X): assert torch.is_tensor(X) and X.size(1) == 7, "Input must be an n-by-7 PyTorch tensor." b = (X[:,0] * ( 3.6 - 2.6 ) + 2.6).reshape(X.shape[0],1) m = (X[:,1] * ( 0.8 - 0.7 ) + 0.7).reshape(X.shape[0],1) z = (X[:,2] * ( 28 - 17 ) + 17).reshape(X.shape[0],1) L1 = (X[:,3] * ( 8.3 - 7.3 ) + 7.3).reshape(X.shape[0],1) L2 = (X[:,4] * ( 8.3 - 7.3 ) + 7.3).reshape(X.shape[0],1) d1 = (X[:,5] * ( 3.9 - 2.9 ) + 2.9).reshape(X.shape[0],1) d2 = (X[:,6] * ( 5.5 - 5 ) + 5).reshape(X.shape[0],1) X_scaled = torch.cat((b, m, z, L1, L2, d1, d2), dim=1) return X_scaled