Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,462 Bytes
5231633 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import torch
class BaseScaler():
def __init__(self):
self.stretched_limits = None
def setup_limits(self, schedule, input_scaler, stretch_max=True, stretch_min=True, shift=1):
min_logSNR = schedule(torch.ones(1), shift=shift)
max_logSNR = schedule(torch.zeros(1), shift=shift)
min_a, max_b = [v.item() for v in input_scaler(min_logSNR)] if stretch_max else [0, 1]
max_a, min_b = [v.item() for v in input_scaler(max_logSNR)] if stretch_min else [1, 0]
self.stretched_limits = [min_a, max_a, min_b, max_b]
return self.stretched_limits
def stretch_limits(self, a, b):
min_a, max_a, min_b, max_b = self.stretched_limits
return (a - min_a) / (max_a - min_a), (b - min_b) / (max_b - min_b)
def scalers(self, logSNR):
raise NotImplementedError("this method needs to be overridden")
def __call__(self, logSNR):
a, b = self.scalers(logSNR)
if self.stretched_limits is not None:
a, b = self.stretch_limits(a, b)
return a, b
class VPScaler(BaseScaler):
def scalers(self, logSNR):
a_squared = logSNR.sigmoid()
a = a_squared.sqrt()
b = (1-a_squared).sqrt()
return a, b
class LERPScaler(BaseScaler):
def scalers(self, logSNR):
_a = logSNR.exp() - 1
_a[_a == 0] = 1e-3 # Avoid division by zero
a = 1 + (2-(2**2 + 4*_a)**0.5) / (2*_a)
b = 1-a
return a, b
|