Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn | |
from torchtools.nn import VectorQuantize | |
from einops import rearrange | |
import torch.nn.functional as F | |
import math | |
class ResBlock(nn.Module): | |
def __init__(self, c, c_hidden): | |
super().__init__() | |
# depthwise/attention | |
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6) | |
self.depthwise = nn.Sequential( | |
nn.ReplicationPad2d(1), | |
nn.Conv2d(c, c, kernel_size=3, groups=c) | |
) | |
# channelwise | |
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6) | |
self.channelwise = nn.Sequential( | |
nn.Linear(c, c_hidden), | |
nn.GELU(), | |
nn.Linear(c_hidden, c), | |
) | |
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True) | |
# Init weights | |
def _basic_init(module): | |
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d): | |
torch.nn.init.xavier_uniform_(module.weight) | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
def _norm(self, x, norm): | |
return norm(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
def forward(self, x): | |
mods = self.gammas | |
x_temp = self._norm(x, self.norm1) * (1 + mods[0]) + mods[1] | |
#x = x.to(torch.float64) | |
x = x + self.depthwise(x_temp) * mods[2] | |
x_temp = self._norm(x, self.norm2) * (1 + mods[3]) + mods[4] | |
x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5] | |
return x | |
def extract_patches(tensor, patch_size, stride): | |
b, c, H, W = tensor.shape | |
pad_h = (patch_size - (H - patch_size) % stride) % stride | |
pad_w = (patch_size - (W - patch_size) % stride) % stride | |
tensor = F.pad(tensor, (0, pad_w, 0, pad_h), mode='reflect') | |
patches = tensor.unfold(2, patch_size, stride).unfold(3, patch_size, stride) | |
patches = patches.contiguous().view(b, c, -1, patch_size, patch_size) | |
patches = patches.permute(0, 2, 1, 3, 4) | |
return patches, (H, W) | |
def fuse_patches(patches, patch_size, stride, H, W): | |
b, num_patches, c, _, _ = patches.shape | |
patches = patches.permute(0, 2, 1, 3, 4) | |
pad_h = (patch_size - (H - patch_size) % stride) % stride | |
pad_w = (patch_size - (W - patch_size) % stride) % stride | |
out_h = H + pad_h | |
out_w = W + pad_w | |
patches = patches.contiguous().view(b, c , -1, patch_size*patch_size ).permute(0, 1, 3, 2) | |
patches = patches.contiguous().view(b, c*patch_size*patch_size, -1) | |
tensor = F.fold(patches, output_size=(out_h, out_w), kernel_size=patch_size, stride=stride) | |
overlap_cnt = F.fold(torch.ones_like(patches), output_size=(out_h, out_w), kernel_size=patch_size, stride=stride) | |
tensor = tensor / overlap_cnt | |
print('end fuse patch', tensor.shape, (tensor.dtype)) | |
return tensor[:, :, :H, :W] | |
class StageA(nn.Module): | |
def __init__(self, levels=2, bottleneck_blocks=12, c_hidden=384, c_latent=4, codebook_size=8192, | |
scale_factor=0.43): # 0.3764 | |
super().__init__() | |
self.c_latent = c_latent | |
self.scale_factor = scale_factor | |
c_levels = [c_hidden // (2 ** i) for i in reversed(range(levels))] | |
# Encoder blocks | |
self.in_block = nn.Sequential( | |
nn.PixelUnshuffle(2), | |
nn.Conv2d(3 * 4, c_levels[0], kernel_size=1) | |
) | |
down_blocks = [] | |
for i in range(levels): | |
if i > 0: | |
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1)) | |
block = ResBlock(c_levels[i], c_levels[i] * 4) | |
down_blocks.append(block) | |
down_blocks.append(nn.Sequential( | |
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False), | |
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1 | |
)) | |
self.down_blocks = nn.Sequential(*down_blocks) | |
self.down_blocks[0] | |
self.codebook_size = codebook_size | |
self.vquantizer = VectorQuantize(c_latent, k=codebook_size) | |
# Decoder blocks | |
up_blocks = [nn.Sequential( | |
nn.Conv2d(c_latent, c_levels[-1], kernel_size=1) | |
)] | |
for i in range(levels): | |
for j in range(bottleneck_blocks if i == 0 else 1): | |
block = ResBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4) | |
up_blocks.append(block) | |
if i < levels - 1: | |
up_blocks.append( | |
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, | |
padding=1)) | |
self.up_blocks = nn.Sequential(*up_blocks) | |
self.out_block = nn.Sequential( | |
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1), | |
nn.PixelShuffle(2), | |
) | |
def encode(self, x, quantize=False): | |
x = self.in_block(x) | |
x = self.down_blocks(x) | |
if quantize: | |
qe, (vq_loss, commit_loss), indices = self.vquantizer.forward(x, dim=1) | |
return qe / self.scale_factor, x / self.scale_factor, indices, vq_loss + commit_loss * 0.25 | |
else: | |
return x / self.scale_factor, None, None, None | |
def decode(self, x, tiled_decoding=False): | |
x = x * self.scale_factor | |
x = self.up_blocks(x) | |
x = self.out_block(x) | |
return x | |
def forward(self, x, quantize=False): | |
qe, x, _, vq_loss = self.encode(x, quantize) | |
x = self.decode(qe) | |
return x, vq_loss | |
class Discriminator(nn.Module): | |
def __init__(self, c_in=3, c_cond=0, c_hidden=512, depth=6): | |
super().__init__() | |
d = max(depth - 3, 3) | |
layers = [ | |
nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)), | |
nn.LeakyReLU(0.2), | |
] | |
for i in range(depth - 1): | |
c_in = c_hidden // (2 ** max((d - i), 0)) | |
c_out = c_hidden // (2 ** max((d - 1 - i), 0)) | |
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1))) | |
layers.append(nn.InstanceNorm2d(c_out)) | |
layers.append(nn.LeakyReLU(0.2)) | |
self.encoder = nn.Sequential(*layers) | |
self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1) | |
self.logits = nn.Sigmoid() | |
def forward(self, x, cond=None): | |
x = self.encoder(x) | |
if cond is not None: | |
cond = cond.view(cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1)) | |
x = torch.cat([x, cond], dim=1) | |
x = self.shuffle(x) | |
x = self.logits(x) | |
return x | |