Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torchvision | |
from torch import nn, optim | |
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection | |
from warmup_scheduler import GradualWarmupScheduler | |
import sys | |
import os | |
import re | |
from dataclasses import dataclass | |
from gdf import GDF, EpsilonTarget, CosineSchedule | |
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight | |
from torchtools.transforms import SmartCrop | |
from modules.effnet import EfficientNetEncoder | |
from modules.stage_c import StageC | |
from modules.stage_c import ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock | |
from modules.previewer import Previewer | |
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken | |
from train.base import DataCore, TrainingCore | |
from core import WarpCore | |
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail | |
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy | |
from torch.distributed.fsdp.wrap import ModuleWrapPolicy | |
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy | |
import functools | |
from accelerate import init_empty_weights | |
from accelerate.utils import set_module_tensor_to_device | |
from contextlib import contextmanager | |
class WurstCore(TrainingCore, DataCore, WarpCore): | |
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config): | |
# TRAINING PARAMS | |
lr: float = EXPECTED_TRAIN | |
warmup_updates: int = EXPECTED_TRAIN | |
dtype: str = None | |
# MODEL VERSION | |
model_version: str = EXPECTED # 3.6B or 1B | |
clip_image_model_name: str = 'openai/clip-vit-large-patch14' | |
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' | |
# CHECKPOINT PATHS | |
effnet_checkpoint_path: str = EXPECTED | |
previewer_checkpoint_path: str = EXPECTED | |
generator_checkpoint_path: str = None | |
lora_checkpoint_path: str = None | |
# LoRA STUFF | |
module_filters: list = EXPECTED | |
rank: int = EXPECTED | |
train_tokens: list = EXPECTED | |
# gdf customization | |
adaptive_loss_weight: str = None | |
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models): | |
effnet: nn.Module = EXPECTED | |
previewer: nn.Module = EXPECTED | |
lora: nn.Module = EXPECTED | |
class Schedulers(WarpCore.Schedulers): | |
lora: any = None | |
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras): | |
gdf: GDF = EXPECTED | |
sampling_configs: dict = EXPECTED | |
effnet_preprocess: torchvision.transforms.Compose = EXPECTED | |
# not frozen, means that fields are mutable. Doesn't support EXPECTED | |
class Info(TrainingCore.Info): | |
train_tokens: list = None | |
class Optimizers(TrainingCore.Optimizers, WarpCore.Optimizers): | |
generator: any = None | |
lora: any = EXPECTED | |
# -------------------------------------------- | |
info: Info | |
config: Config | |
# Extras: gdf, transforms and preprocessors -------------------------------- | |
def setup_extras_pre(self) -> Extras: | |
gdf = GDF( | |
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]), | |
input_scaler=VPScaler(), target=EpsilonTarget(), | |
noise_cond=CosineTNoiseCond(), | |
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(), | |
) | |
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20} | |
if self.info.adaptive_loss is not None: | |
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges']) | |
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses']) | |
effnet_preprocess = torchvision.transforms.Compose([ | |
torchvision.transforms.Normalize( | |
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) | |
) | |
]) | |
clip_preprocess = torchvision.transforms.Compose([ | |
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC), | |
torchvision.transforms.CenterCrop(224), | |
torchvision.transforms.Normalize( | |
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711) | |
) | |
]) | |
if self.config.training: | |
transforms = torchvision.transforms.Compose([ | |
torchvision.transforms.ToTensor(), | |
torchvision.transforms.Resize(self.config.image_size, interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True), | |
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2) | |
]) | |
else: | |
transforms = None | |
return self.Extras( | |
gdf=gdf, | |
sampling_configs=sampling_configs, | |
transforms=transforms, | |
effnet_preprocess=effnet_preprocess, | |
clip_preprocess=clip_preprocess | |
) | |
# Data -------------------------------- | |
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False, | |
eval_image_embeds=False, return_fields=None): | |
conditions = super().get_conditions( | |
batch, models, extras, is_eval, is_unconditional, | |
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img'] | |
) | |
return conditions | |
# Models, Optimizers & Schedulers setup -------------------------------- | |
def setup_models(self, extras: Extras) -> Models: | |
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.float32 | |
# EfficientNet encoder | |
effnet = EfficientNetEncoder().to(self.device) | |
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path) | |
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict']) | |
effnet.eval().requires_grad_(False) | |
del effnet_checkpoint | |
# Previewer | |
previewer = Previewer().to(self.device) | |
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path) | |
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict']) | |
previewer.eval().requires_grad_(False) | |
del previewer_checkpoint | |
def dummy_context(): | |
yield None | |
loading_context = dummy_context if self.config.training else init_empty_weights | |
with loading_context(): | |
# Diffusion models | |
if self.config.model_version == '3.6B': | |
generator = StageC() | |
elif self.config.model_version == '1B': | |
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]]) | |
else: | |
raise ValueError(f"Unknown model version {self.config.model_version}") | |
if self.config.generator_checkpoint_path is not None: | |
if loading_context is dummy_context: | |
generator.load_state_dict(load_or_fail(self.config.generator_checkpoint_path)) | |
else: | |
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items(): | |
set_module_tensor_to_device(generator, param_name, "cpu", value=param) | |
generator = generator.to(dtype).to(self.device) | |
generator = self.load_model(generator, 'generator') | |
# if self.config.use_fsdp: | |
# fsdp_auto_wrap_policy = functools.partial(size_based_auto_wrap_policy, min_num_params=3000) | |
# generator = FSDP(generator, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device) | |
# CLIP encoders | |
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name) | |
text_model = CLIPTextModelWithProjection.from_pretrained(self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device) | |
image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device) | |
# PREPARE LORA | |
update_tokens = [] | |
for tkn_regex, aggr_regex in self.config.train_tokens: | |
if (tkn_regex.startswith('[') and tkn_regex.endswith(']')) or (tkn_regex.startswith('<') and tkn_regex.endswith('>')): | |
# Insert new token | |
tokenizer.add_tokens([tkn_regex]) | |
# add new zeros embedding | |
new_embedding = torch.zeros_like(text_model.text_model.embeddings.token_embedding.weight.data)[:1] | |
if aggr_regex is not None: # aggregate embeddings to provide an interesting baseline | |
aggr_tokens = [v for k, v in tokenizer.vocab.items() if re.search(aggr_regex, k) is not None] | |
if len(aggr_tokens) > 0: | |
new_embedding = text_model.text_model.embeddings.token_embedding.weight.data[aggr_tokens].mean(dim=0, keepdim=True) | |
elif self.is_main_node: | |
print(f"WARNING: No tokens found for aggregation regex {aggr_regex}. It will be initialized as zeros.") | |
text_model.text_model.embeddings.token_embedding.weight.data = torch.cat([ | |
text_model.text_model.embeddings.token_embedding.weight.data, new_embedding | |
], dim=0) | |
selected_tokens = [len(tokenizer.vocab) - 1] | |
else: | |
selected_tokens = [v for k, v in tokenizer.vocab.items() if re.search(tkn_regex, k) is not None] | |
update_tokens += selected_tokens | |
update_tokens = list(set(update_tokens)) # remove duplicates | |
apply_retoken(text_model.text_model.embeddings.token_embedding, update_tokens) | |
apply_lora(generator, filters=self.config.module_filters, rank=self.config.rank) | |
text_model.text_model.to(self.device) | |
generator.to(self.device) | |
lora = nn.ModuleDict() | |
lora['embeddings'] = text_model.text_model.embeddings.token_embedding.parametrizations.weight[0] | |
lora['weights'] = nn.ModuleList() | |
for module in generator.modules(): | |
if isinstance(module, LoRA) or (hasattr(module, '_fsdp_wrapped_module') and isinstance(module._fsdp_wrapped_module, LoRA)): | |
lora['weights'].append(module) | |
self.info.train_tokens = [(i, tokenizer.decode(i)) for i in update_tokens] | |
if self.is_main_node: | |
print("Updating tokens:", self.info.train_tokens) | |
print(f"LoRA training {len(lora['weights'])} layers") | |
if self.config.lora_checkpoint_path is not None: | |
lora_checkpoint = load_or_fail(self.config.lora_checkpoint_path) | |
lora.load_state_dict(lora_checkpoint if 'state_dict' not in lora_checkpoint else lora_checkpoint['state_dict']) | |
lora = self.load_model(lora, 'lora') | |
lora.to(self.device).train().requires_grad_(True) | |
if self.config.use_fsdp: | |
# fsdp_auto_wrap_policy = functools.partial(size_based_auto_wrap_policy, min_num_params=3000) | |
fsdp_auto_wrap_policy = ModuleWrapPolicy([LoRA, ReToken]) | |
lora = FSDP(lora, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device) | |
return self.Models( | |
effnet=effnet, previewer=previewer, | |
generator=generator, generator_ema=None, | |
lora=lora, | |
tokenizer=tokenizer, text_model=text_model, image_model=image_model | |
) | |
def setup_optimizers(self, extras: Extras, models: Models) -> Optimizers: | |
optimizer = optim.AdamW(models.lora.parameters(), lr=self.config.lr) # , eps=1e-7, betas=(0.9, 0.95)) | |
optimizer = self.load_optimizer(optimizer, 'lora_optim', | |
fsdp_model=models.lora if self.config.use_fsdp else None) | |
return self.Optimizers(generator=None, lora=optimizer) | |
def setup_schedulers(self, extras: Extras, models: Models, optimizers: Optimizers) -> Schedulers: | |
scheduler = GradualWarmupScheduler(optimizers.lora, multiplier=1, total_epoch=self.config.warmup_updates) | |
scheduler.last_epoch = self.info.total_steps | |
return self.Schedulers(lora=scheduler) | |
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models): | |
batch = next(data.iterator) | |
conditions = self.get_conditions(batch, models, extras) | |
with torch.no_grad(): | |
latents = self.encode_latents(batch, models, extras) | |
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1) | |
with torch.cuda.amp.autocast(dtype=torch.bfloat16): | |
pred = models.generator(noised, noise_cond, **conditions) | |
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3]) | |
loss_adjusted = (loss * loss_weight).mean() / self.config.grad_accum_steps | |
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): | |
extras.gdf.loss_weight.update_buckets(logSNR, loss) | |
return loss, loss_adjusted | |
def backward_pass(self, update, loss, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers): | |
if update: | |
loss_adjusted.backward() | |
grad_norm = nn.utils.clip_grad_norm_(models.lora.parameters(), 1.0) | |
optimizers_dict = optimizers.to_dict() | |
for k in optimizers_dict: | |
if optimizers_dict[k] is not None and k != 'training': | |
optimizers_dict[k].step() | |
schedulers_dict = schedulers.to_dict() | |
for k in schedulers_dict: | |
if k != 'training': | |
schedulers_dict[k].step() | |
for k in optimizers_dict: | |
if optimizers_dict[k] is not None and k != 'training': | |
optimizers_dict[k].zero_grad(set_to_none=True) | |
self.info.total_steps += 1 | |
else: | |
loss_adjusted.backward() | |
grad_norm = torch.tensor(0.0).to(self.device) | |
return grad_norm | |
def models_to_save(self): | |
return ['lora'] | |
def sample(self, models: Models, data: WarpCore.Data, extras: Extras): | |
models.lora.eval() | |
super().sample(models, data, extras) | |
models.lora.train(), models.generator.eval() | |
def encode_latents(self, batch: dict, models: Models, extras: Extras) -> torch.Tensor: | |
images = batch['images'].to(self.device) | |
return models.effnet(extras.effnet_preprocess(images)) | |
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor: | |
return models.previewer(latents) | |
if __name__ == '__main__': | |
print("Launching Script") | |
warpcore = WurstCore( | |
config_file_path=sys.argv[1] if len(sys.argv) > 1 else None, | |
device=torch.device(int(os.environ.get("SLURM_LOCALID"))) | |
) | |
warpcore.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD | |
# RUN TRAINING | |
warpcore() | |