Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import yaml | |
import torch | |
import sys | |
sys.path.append(os.path.abspath('./')) | |
from inference.utils import * | |
from train import WurstCoreB | |
from gdf import DDPMSampler | |
from train import WurstCore_t2i as WurstCoreC | |
import numpy as np | |
import random | |
import argparse | |
import gradio as gr | |
import spaces | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( '--height', type=int, default=2560, help='image height') | |
parser.add_argument('--width', type=int, default=5120, help='image width') | |
parser.add_argument('--seed', type=int, default=123, help='random seed') | |
parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ') | |
parser.add_argument('--config_c', type=str, | |
default='configs/training/t2i.yaml' ,help='config file for stage c, latent generation') | |
parser.add_argument('--config_b', type=str, | |
default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding') | |
parser.add_argument( '--prompt', type=str, | |
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt') | |
parser.add_argument( '--num_image', type=int, default=1, help='how many images generated') | |
parser.add_argument( '--output_dir', type=str, default='figures/output_results/', help='output directory for generated image') | |
parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory') | |
parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel') | |
args = parser.parse_args() | |
return args | |
def clear_image(): | |
return None | |
def load_message(height, width, seed, prompt, args, stage_a_tiled): | |
args.height = height | |
args.width = width | |
args.seed = seed | |
args.prompt = prompt + ' rich detail, 4k, high quality' | |
args.stage_a_tiled = stage_a_tiled | |
return args | |
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled): | |
global args | |
args = load_message(height, width, seed, prompt, args, stage_a_tiled) | |
torch.manual_seed(args.seed) | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float | |
captions = [args.prompt] * args.num_image | |
height, width = args.height, args.width | |
batch_size=1 | |
height_lr, width_lr = get_target_lr_size(height / width, std_size=32) | |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size) | |
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size) | |
# Stage C Parameters | |
extras.sampling_configs['cfg'] = 4 | |
extras.sampling_configs['shift'] = 1 | |
extras.sampling_configs['timesteps'] = 20 | |
extras.sampling_configs['t_start'] = 1.0 | |
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf) | |
# Stage B Parameters | |
extras_b.sampling_configs['cfg'] = 1.1 | |
extras_b.sampling_configs['shift'] = 1 | |
extras_b.sampling_configs['timesteps'] = 10 | |
extras_b.sampling_configs['t_start'] = 1.0 | |
for _, caption in enumerate(captions): | |
batch = {'captions': [caption] * batch_size} | |
#conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False) | |
#unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False) | |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False) | |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True) | |
with torch.no_grad(): | |
models.generator.cuda() | |
print('STAGE C GENERATION***************************') | |
with torch.cuda.amp.autocast(dtype=dtype): | |
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device) | |
models.generator.cpu() | |
torch.cuda.empty_cache() | |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False) | |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True) | |
conditions_b['effnet'] = sampled_c | |
unconditions_b['effnet'] = torch.zeros_like(sampled_c) | |
print('STAGE B + A DECODING***************************') | |
with torch.cuda.amp.autocast(dtype=dtype): | |
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled) | |
torch.cuda.empty_cache() | |
imgs = show_images(sampled) | |
#for idx, img in enumerate(imgs): | |
#print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx) | |
#img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg')) | |
return imgs[0] | |
#print('finished! Results ') | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
height = gr.Slider(value=2304, step=32, minimum=1536, maximum=4096, label='Height') | |
width = gr.Slider(value=4096, step=32, minimum=1536, maximum=5120, label='Width') | |
seed = gr.Number(value=123, step=1, label='Random Seed') | |
prompt = gr.Textbox(value='', max_lines=4, label='Text Prompt') | |
cfg = gr.Slider(value=4, step=0.1, minimum=3, maximum=10, label='CFG') | |
timesteps = gr.Slider(value=20, step=1, minimum=10, maximum=50, label='Timesteps') | |
stage_a_tiled = gr.Checkbox(value=False, label='Stage_a_tiled') | |
with gr.Row(): | |
clear_button = gr.Button("Clear!") | |
polish_button = gr.Button("Submit!") | |
with gr.Column(): | |
output_img = gr.Image(label='Output Image', sources=None) | |
with gr.Column(): | |
prompt2 = gr.Textbox( | |
value=''' | |
1. a happy cat | |
2. a happy girl | |
''', label='Text prompt examples' | |
) | |
polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img) | |
polish_button.click(clear_image, inputs=[], outputs=output_img) | |
if __name__ == "__main__": | |
args = parse_args() | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
config_file = args.config_c | |
with open(config_file, "r", encoding="utf-8") as file: | |
loaded_config = yaml.safe_load(file) | |
core = WurstCoreC(config_dict=loaded_config, device=device, training=False) | |
# SETUP STAGE B | |
config_file_b = args.config_b | |
with open(config_file_b, "r", encoding="utf-8") as file: | |
config_file_b = yaml.safe_load(file) | |
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False) | |
extras = core.setup_extras_pre() | |
models = core.setup_models(extras) | |
models.generator.eval().requires_grad_(False) | |
print("STAGE C READY") | |
extras_b = core_b.setup_extras_pre() | |
models_b = core_b.setup_models(extras_b, skip_clip=True) | |
models_b = WurstCoreB.Models( | |
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model} | |
) | |
models_b.generator.bfloat16().eval().requires_grad_(False) | |
print("STAGE B READY") | |
pretrained_path = args.pretrained_path | |
sdd = torch.load(pretrained_path, map_location='cpu') | |
collect_sd = {} | |
for k, v in sdd.items(): | |
collect_sd[k[7:]] = v | |
models.train_norm.load_state_dict(collect_sd) | |
models.generator.eval() | |
models.train_norm.eval() | |
demo.launch( | |
debug=True, share=True, | |
) |