Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
from einops import rearrange | |
import torch.fft as fft | |
class Linear(torch.nn.Linear): | |
def reset_parameters(self): | |
return None | |
class Conv2d(torch.nn.Conv2d): | |
def reset_parameters(self): | |
return None | |
class Attention2D(nn.Module): | |
def __init__(self, c, nhead, dropout=0.0): | |
super().__init__() | |
self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True) | |
def forward(self, x, kv, self_attn=False): | |
orig_shape = x.shape | |
x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4 | |
if self_attn: | |
#print('in line 23 algong self att ', kv.shape, x.shape) | |
kv = torch.cat([x, kv], dim=1) | |
#if x.shape[1] >= 72 * 72: | |
# x = x * math.sqrt(math.log(64*64, 24*24)) | |
x = self.attn(x, kv, kv, need_weights=False)[0] | |
x = x.permute(0, 2, 1).view(*orig_shape) | |
return x | |
class LayerNorm2d(nn.LayerNorm): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def forward(self, x): | |
return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
class GlobalResponseNorm(nn.Module): | |
"from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105" | |
def __init__(self, dim): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
def forward(self, x): | |
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) | |
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) | |
return self.gamma * (x * Nx) + self.beta + x | |
class ResBlock(nn.Module): | |
def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): # , num_heads=4, expansion=2): | |
super().__init__() | |
self.depthwise = Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) | |
# self.depthwise = SAMBlock(c, num_heads, expansion) | |
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) | |
self.channelwise = nn.Sequential( | |
Linear(c + c_skip, c * 4), | |
nn.GELU(), | |
GlobalResponseNorm(c * 4), | |
nn.Dropout(dropout), | |
Linear(c * 4, c) | |
) | |
def forward(self, x, x_skip=None): | |
x_res = x | |
x = self.norm(self.depthwise(x)) | |
if x_skip is not None: | |
x = torch.cat([x, x_skip], dim=1) | |
x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
return x + x_res | |
class AttnBlock(nn.Module): | |
def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): | |
super().__init__() | |
self.self_attn = self_attn | |
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) | |
self.attention = Attention2D(c, nhead, dropout) | |
self.kv_mapper = nn.Sequential( | |
nn.SiLU(), | |
Linear(c_cond, c) | |
) | |
def forward(self, x, kv): | |
kv = self.kv_mapper(kv) | |
res = self.attention(self.norm(x), kv, self_attn=self.self_attn) | |
#print(torch.unique(res), torch.unique(x), self.self_attn) | |
#scale = math.sqrt(math.log(x.shape[-2] * x.shape[-1], 24*24)) | |
x = x + res | |
return x | |
class FeedForwardBlock(nn.Module): | |
def __init__(self, c, dropout=0.0): | |
super().__init__() | |
self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) | |
self.channelwise = nn.Sequential( | |
Linear(c, c * 4), | |
nn.GELU(), | |
GlobalResponseNorm(c * 4), | |
nn.Dropout(dropout), | |
Linear(c * 4, c) | |
) | |
def forward(self, x): | |
x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
return x | |
class TimestepBlock(nn.Module): | |
def __init__(self, c, c_timestep, conds=['sca']): | |
super().__init__() | |
self.mapper = Linear(c_timestep, c * 2) | |
self.conds = conds | |
for cname in conds: | |
setattr(self, f"mapper_{cname}", Linear(c_timestep, c * 2)) | |
def forward(self, x, t): | |
t = t.chunk(len(self.conds) + 1, dim=1) | |
a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1) | |
for i, c in enumerate(self.conds): | |
ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1) | |
a, b = a + ac, b + bc | |
return x * (1 + a) + b | |