Spaces:
Running
on
Zero
Running
on
Zero
import torchvision | |
import torch | |
from torch import nn | |
import numpy as np | |
import kornia | |
import cv2 | |
from core.utils import load_or_fail | |
#from insightface.app.common import Face | |
from .effnet import EfficientNetEncoder | |
from .cnet_modules.pidinet import PidiNetDetector | |
from .cnet_modules.inpainting.saliency_model import MicroResNet | |
#from .cnet_modules.face_id.arcface import FaceDetector, ArcFaceRecognizer | |
from .common import LayerNorm2d | |
class CNetResBlock(nn.Module): | |
def __init__(self, c): | |
super().__init__() | |
self.blocks = nn.Sequential( | |
LayerNorm2d(c), | |
nn.GELU(), | |
nn.Conv2d(c, c, kernel_size=3, padding=1), | |
LayerNorm2d(c), | |
nn.GELU(), | |
nn.Conv2d(c, c, kernel_size=3, padding=1), | |
) | |
def forward(self, x): | |
return x + self.blocks(x) | |
class ControlNet(nn.Module): | |
def __init__(self, c_in=3, c_proj=2048, proj_blocks=None, bottleneck_mode=None): | |
super().__init__() | |
if bottleneck_mode is None: | |
bottleneck_mode = 'effnet' | |
self.proj_blocks = proj_blocks | |
if bottleneck_mode == 'effnet': | |
embd_channels = 1280 | |
#self.backbone = torchvision.models.efficientnet_v2_s(weights='DEFAULT').features.eval() | |
self.backbone = torchvision.models.efficientnet_v2_s().features.eval() | |
if c_in != 3: | |
in_weights = self.backbone[0][0].weight.data | |
self.backbone[0][0] = nn.Conv2d(c_in, 24, kernel_size=3, stride=2, bias=False) | |
if c_in > 3: | |
nn.init.constant_(self.backbone[0][0].weight, 0) | |
self.backbone[0][0].weight.data[:, :3] = in_weights[:, :3].clone() | |
else: | |
self.backbone[0][0].weight.data = in_weights[:, :c_in].clone() | |
elif bottleneck_mode == 'simple': | |
embd_channels = c_in | |
self.backbone = nn.Sequential( | |
nn.Conv2d(embd_channels, embd_channels * 4, kernel_size=3, padding=1), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(embd_channels * 4, embd_channels, kernel_size=3, padding=1), | |
) | |
elif bottleneck_mode == 'large': | |
self.backbone = nn.Sequential( | |
nn.Conv2d(c_in, 4096 * 4, kernel_size=1), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(4096 * 4, 1024, kernel_size=1), | |
*[CNetResBlock(1024) for _ in range(8)], | |
nn.Conv2d(1024, 1280, kernel_size=1), | |
) | |
embd_channels = 1280 | |
else: | |
raise ValueError(f'Unknown bottleneck mode: {bottleneck_mode}') | |
self.projections = nn.ModuleList() | |
for _ in range(len(proj_blocks)): | |
self.projections.append(nn.Sequential( | |
nn.Conv2d(embd_channels, embd_channels, kernel_size=1, bias=False), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(embd_channels, c_proj, kernel_size=1, bias=False), | |
)) | |
nn.init.constant_(self.projections[-1][-1].weight, 0) # zero output projection | |
def forward(self, x): | |
x = self.backbone(x) | |
proj_outputs = [None for _ in range(max(self.proj_blocks) + 1)] | |
for i, idx in enumerate(self.proj_blocks): | |
proj_outputs[idx] = self.projections[i](x) | |
return proj_outputs | |
class ControlNetDeliverer(): | |
def __init__(self, controlnet_projections): | |
self.controlnet_projections = controlnet_projections | |
self.restart() | |
def restart(self): | |
self.idx = 0 | |
return self | |
def __call__(self): | |
if self.idx < len(self.controlnet_projections): | |
output = self.controlnet_projections[self.idx] | |
else: | |
output = None | |
self.idx += 1 | |
return output | |
# CONTROLNET FILTERS ---------------------------------------------------- | |
class BaseFilter(): | |
def __init__(self, device): | |
self.device = device | |
def num_channels(self): | |
return 3 | |
def __call__(self, x): | |
return x | |
class CannyFilter(BaseFilter): | |
def __init__(self, device, resize=224): | |
super().__init__(device) | |
self.resize = resize | |
def num_channels(self): | |
return 1 | |
def __call__(self, x): | |
orig_size = x.shape[-2:] | |
if self.resize is not None: | |
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear') | |
edges = [cv2.Canny(x[i].mul(255).permute(1, 2, 0).cpu().numpy().astype(np.uint8), 100, 200) for i in range(len(x))] | |
edges = torch.stack([torch.tensor(e).div(255).unsqueeze(0) for e in edges], dim=0) | |
if self.resize is not None: | |
edges = nn.functional.interpolate(edges, size=orig_size, mode='bilinear') | |
return edges | |
class QRFilter(BaseFilter): | |
def __init__(self, device, resize=224, blobify=True, dilation_kernels=[3, 5, 7], blur_kernels=[15]): | |
super().__init__(device) | |
self.resize = resize | |
self.blobify = blobify | |
self.dilation_kernels = dilation_kernels | |
self.blur_kernels = blur_kernels | |
def num_channels(self): | |
return 1 | |
def __call__(self, x): | |
x = x.to(self.device) | |
orig_size = x.shape[-2:] | |
if self.resize is not None: | |
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear') | |
x = kornia.color.rgb_to_hsv(x)[:, -1:] | |
# blobify | |
if self.blobify: | |
d_kernel = np.random.choice(self.dilation_kernels) | |
d_blur = np.random.choice(self.blur_kernels) | |
if d_blur > 0: | |
x = torchvision.transforms.GaussianBlur(d_blur)(x) | |
if d_kernel > 0: | |
blob_mask = ((torch.linspace(-0.5, 0.5, d_kernel).pow(2)[None] + torch.linspace(-0.5, 0.5, | |
d_kernel).pow(2)[:, | |
None]) < 0.3).float().to(self.device) | |
x = kornia.morphology.dilation(x, blob_mask) | |
x = kornia.morphology.erosion(x, blob_mask) | |
# mask | |
vmax, vmin = x.amax(dim=[2, 3], keepdim=True)[0], x.amin(dim=[2, 3], keepdim=True)[0] | |
th = (vmax - vmin) * 0.33 | |
high_brightness, low_brightness = (x > (vmax - th)).float(), (x < (vmin + th)).float() | |
mask = (torch.ones_like(x) - low_brightness + high_brightness) * 0.5 | |
if self.resize is not None: | |
mask = nn.functional.interpolate(mask, size=orig_size, mode='bilinear') | |
return mask.cpu() | |
class PidiFilter(BaseFilter): | |
def __init__(self, device, resize=224, dilation_kernels=[0, 3, 5, 7, 9], binarize=True): | |
super().__init__(device) | |
self.resize = resize | |
self.model = PidiNetDetector(device) | |
self.dilation_kernels = dilation_kernels | |
self.binarize = binarize | |
def num_channels(self): | |
return 1 | |
def __call__(self, x): | |
x = x.to(self.device) | |
orig_size = x.shape[-2:] | |
if self.resize is not None: | |
x = nn.functional.interpolate(x, size=(self.resize, self.resize), mode='bilinear') | |
x = self.model(x) | |
d_kernel = np.random.choice(self.dilation_kernels) | |
if d_kernel > 0: | |
blob_mask = ((torch.linspace(-0.5, 0.5, d_kernel).pow(2)[None] + torch.linspace(-0.5, 0.5, d_kernel).pow(2)[ | |
:, None]) < 0.3).float().to(self.device) | |
x = kornia.morphology.dilation(x, blob_mask) | |
if self.binarize: | |
th = np.random.uniform(0.05, 0.7) | |
x = (x > th).float() | |
if self.resize is not None: | |
x = nn.functional.interpolate(x, size=orig_size, mode='bilinear') | |
return x.cpu() | |
class SRFilter(BaseFilter): | |
def __init__(self, device, scale_factor=1 / 4): | |
super().__init__(device) | |
self.scale_factor = scale_factor | |
def num_channels(self): | |
return 3 | |
def __call__(self, x): | |
x = torch.nn.functional.interpolate(x.clone(), scale_factor=self.scale_factor, mode="nearest") | |
return torch.nn.functional.interpolate(x, scale_factor=1 / self.scale_factor, mode="nearest") | |
class SREffnetFilter(BaseFilter): | |
def __init__(self, device, scale_factor=1/2): | |
super().__init__(device) | |
self.scale_factor = scale_factor | |
self.effnet_preprocess = torchvision.transforms.Compose([ | |
torchvision.transforms.Normalize( | |
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) | |
) | |
]) | |
self.effnet = EfficientNetEncoder().to(self.device) | |
effnet_checkpoint = load_or_fail("models/effnet_encoder.safetensors") | |
self.effnet.load_state_dict(effnet_checkpoint) | |
self.effnet.eval().requires_grad_(False) | |
def num_channels(self): | |
return 16 | |
def __call__(self, x): | |
x = torch.nn.functional.interpolate(x.clone(), scale_factor=self.scale_factor, mode="nearest") | |
with torch.no_grad(): | |
effnet_embedding = self.effnet(self.effnet_preprocess(x.to(self.device))).cpu() | |
effnet_embedding = torch.nn.functional.interpolate(effnet_embedding, scale_factor=1/self.scale_factor, mode="nearest") | |
upscaled_image = torch.nn.functional.interpolate(x, scale_factor=1/self.scale_factor, mode="nearest") | |
return effnet_embedding, upscaled_image | |
class InpaintFilter(BaseFilter): | |
def __init__(self, device, thresold=[0.04, 0.4], p_outpaint=0.4): | |
super().__init__(device) | |
self.saliency_model = MicroResNet().eval().requires_grad_(False).to(device) | |
self.saliency_model.load_state_dict(load_or_fail("modules/cnet_modules/inpainting/saliency_model.pt")) | |
self.thresold = thresold | |
self.p_outpaint = p_outpaint | |
def num_channels(self): | |
return 4 | |
def __call__(self, x, mask=None, threshold=None, outpaint=None): | |
x = x.to(self.device) | |
resized_x = torchvision.transforms.functional.resize(x, 240, antialias=True) | |
if threshold is None: | |
threshold = np.random.uniform(self.thresold[0], self.thresold[1]) | |
if mask is None: | |
saliency_map = self.saliency_model(resized_x) > threshold | |
if outpaint is None: | |
if np.random.rand() < self.p_outpaint: | |
saliency_map = ~saliency_map | |
else: | |
if outpaint: | |
saliency_map = ~saliency_map | |
interpolated_saliency_map = torch.nn.functional.interpolate(saliency_map.float(), size=x.shape[2:], mode="nearest") | |
saliency_map = torchvision.transforms.functional.gaussian_blur(interpolated_saliency_map, 141) > 0.5 | |
inpainted_images = torch.where(saliency_map, torch.ones_like(x), x) | |
mask = torch.nn.functional.interpolate(saliency_map.float(), size=inpainted_images.shape[2:], mode="nearest") | |
else: | |
mask = mask.to(self.device) | |
inpainted_images = torch.where(mask, torch.ones_like(x), x) | |
c_inpaint = torch.cat([inpainted_images, mask], dim=1) | |
return c_inpaint.cpu() | |
# IDENTITY | |
''' | |
class IdentityFilter(BaseFilter): | |
def __init__(self, device, max_faces=4, p_drop=0.05, p_full=0.3): | |
detector_path = 'modules/cnet_modules/face_id/models/buffalo_l/det_10g.onnx' | |
recognizer_path = 'modules/cnet_modules/face_id/models/buffalo_l/w600k_r50.onnx' | |
super().__init__(device) | |
self.max_faces = max_faces | |
self.p_drop = p_drop | |
self.p_full = p_full | |
self.detector = FaceDetector(detector_path, device=device) | |
self.recognizer = ArcFaceRecognizer(recognizer_path, device=device) | |
self.id_colors = torch.tensor([ | |
[1.0, 0.0, 0.0], # RED | |
[0.0, 1.0, 0.0], # GREEN | |
[0.0, 0.0, 1.0], # BLUE | |
[1.0, 0.0, 1.0], # PURPLE | |
[0.0, 1.0, 1.0], # CYAN | |
[1.0, 1.0, 0.0], # YELLOW | |
[0.5, 0.0, 0.0], # DARK RED | |
[0.0, 0.5, 0.0], # DARK GREEN | |
[0.0, 0.0, 0.5], # DARK BLUE | |
[0.5, 0.0, 0.5], # DARK PURPLE | |
[0.0, 0.5, 0.5], # DARK CYAN | |
[0.5, 0.5, 0.0], # DARK YELLOW | |
]) | |
def num_channels(self): | |
return 512 | |
def get_faces(self, image): | |
npimg = image.permute(1, 2, 0).mul(255).to(device="cpu", dtype=torch.uint8).cpu().numpy() | |
bgr = cv2.cvtColor(npimg, cv2.COLOR_RGB2BGR) | |
bboxes, kpss = self.detector.detect(bgr, max_num=self.max_faces) | |
N = len(bboxes) | |
ids = torch.zeros((N, 512), dtype=torch.float32) | |
for i in range(N): | |
face = Face(bbox=bboxes[i, :4], kps=kpss[i], det_score=bboxes[i, 4]) | |
ids[i, :] = self.recognizer.get(bgr, face) | |
tbboxes = torch.tensor(bboxes[:, :4], dtype=torch.int) | |
ids = ids / torch.linalg.norm(ids, dim=1, keepdim=True) | |
return tbboxes, ids # returns bounding boxes (N x 4) and ID vectors (N x 512) | |
def __call__(self, x): | |
visual_aid = x.clone().cpu() | |
face_mtx = torch.zeros(x.size(0), 512, x.size(-2) // 32, x.size(-1) // 32) | |
for i in range(x.size(0)): | |
bounding_boxes, ids = self.get_faces(x[i]) | |
for j in range(bounding_boxes.size(0)): | |
if np.random.rand() > self.p_drop: | |
sx, sy, ex, ey = (bounding_boxes[j] / 32).clamp(min=0).round().int().tolist() | |
ex, ey = max(ex, sx + 1), max(ey, sy + 1) | |
if bounding_boxes.size(0) == 1 and np.random.rand() < self.p_full: | |
sx, sy, ex, ey = 0, 0, x.size(-1) // 32, x.size(-2) // 32 | |
face_mtx[i, :, sy:ey, sx:ex] = ids[j:j + 1, :, None, None] | |
visual_aid[i, :, int(sy * 32):int(ey * 32), int(sx * 32):int(ex * 32)] += self.id_colors[j % 13, :, | |
None, None] | |
visual_aid[i, :, int(sy * 32):int(ey * 32), int(sx * 32):int(ex * 32)] *= 0.5 | |
return face_mtx.to(x.device), visual_aid.to(x.device) | |
''' | |