Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import json | |
import yaml | |
import torchvision | |
from torch import nn, optim | |
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection | |
from warmup_scheduler import GradualWarmupScheduler | |
import torch.multiprocessing as mp | |
import os | |
import numpy as np | |
import re | |
import sys | |
sys.path.append(os.path.abspath('./')) | |
from dataclasses import dataclass | |
from torch.distributed import init_process_group, destroy_process_group, barrier | |
from gdf import GDF_dual_fixlrt as GDF | |
from gdf import EpsilonTarget, CosineSchedule | |
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight | |
from torchtools.transforms import SmartCrop | |
from fractions import Fraction | |
from modules.effnet import EfficientNetEncoder | |
from modules.model_4stage_lite import StageC, ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock | |
from modules.common_ckpt import GlobalResponseNorm | |
from modules.previewer import Previewer | |
from core.data import Bucketeer | |
from train.base import DataCore, TrainingCore | |
from tqdm import tqdm | |
from core import WarpCore | |
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail | |
from accelerate import init_empty_weights | |
from accelerate.utils import set_module_tensor_to_device | |
from contextlib import contextmanager | |
from train.dist_core import * | |
import glob | |
from torch.utils.data import DataLoader, Dataset | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from torch.utils.data.distributed import DistributedSampler | |
from PIL import Image | |
from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary | |
from core.utils import Base | |
import torch.nn.functional as F | |
import functools | |
import math | |
import copy | |
import random | |
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken | |
Image.MAX_IMAGE_PIXELS = None | |
torch.manual_seed(23) | |
random.seed(23) | |
np.random.seed(23) | |
#7978026 | |
class Null_Model(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x): | |
pass | |
def identity(x): | |
if isinstance(x, bytes): | |
x = x.decode('utf-8') | |
return x | |
def check_nan_inmodel(model, meta=''): | |
for name, param in model.named_parameters(): | |
if torch.isnan(param).any(): | |
print(f"nan detected in {name}", meta) | |
return True | |
print('no nan', meta) | |
return False | |
class mydist_dataset(Dataset): | |
def __init__(self, rootpath, tmp_prompt, img_processor=None): | |
self.img_pathlist = glob.glob(os.path.join(rootpath, '*.jpg')) | |
self.img_pathlist = self.img_pathlist * 100000 | |
self.img_processor = img_processor | |
self.length = len( self.img_pathlist) | |
self.caption = tmp_prompt | |
def __getitem__(self, idx): | |
imgpath = self.img_pathlist[idx] | |
txt = self.caption | |
try: | |
img = Image.open(imgpath).convert('RGB') | |
w, h = img.size | |
if self.img_processor is not None: | |
img = self.img_processor(img) | |
except: | |
print('exception', imgpath) | |
return self.__getitem__(random.randint(0, self.length -1 ) ) | |
return dict(captions=txt, images=img) | |
def __len__(self): | |
return self.length | |
class WurstCore(TrainingCore, DataCore, WarpCore): | |
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config): | |
# TRAINING PARAMS | |
lr: float = EXPECTED_TRAIN | |
warmup_updates: int = EXPECTED_TRAIN | |
dtype: str = None | |
# MODEL VERSION | |
model_version: str = EXPECTED # 3.6B or 1B | |
clip_image_model_name: str = 'openai/clip-vit-large-patch14' | |
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' | |
# CHECKPOINT PATHS | |
effnet_checkpoint_path: str = EXPECTED | |
previewer_checkpoint_path: str = EXPECTED | |
generator_checkpoint_path: str = None | |
ultrapixel_path: str = EXPECTED | |
# gdf customization | |
adaptive_loss_weight: str = None | |
# LoRA STUFF | |
module_filters: list = EXPECTED | |
rank: int = EXPECTED | |
train_tokens: list = EXPECTED | |
use_ddp: bool=EXPECTED | |
tmp_prompt: str=EXPECTED | |
class Data(Base): | |
dataset: Dataset = EXPECTED | |
dataloader: DataLoader = EXPECTED | |
iterator: any = EXPECTED | |
sampler: DistributedSampler = EXPECTED | |
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models): | |
effnet: nn.Module = EXPECTED | |
previewer: nn.Module = EXPECTED | |
train_norm: nn.Module = EXPECTED | |
train_lora: nn.Module = EXPECTED | |
class Schedulers(WarpCore.Schedulers): | |
generator: any = None | |
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras): | |
gdf: GDF = EXPECTED | |
sampling_configs: dict = EXPECTED | |
effnet_preprocess: torchvision.transforms.Compose = EXPECTED | |
info: TrainingCore.Info | |
config: Config | |
def setup_extras_pre(self) -> Extras: | |
gdf = GDF( | |
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]), | |
input_scaler=VPScaler(), target=EpsilonTarget(), | |
noise_cond=CosineTNoiseCond(), | |
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(), | |
) | |
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20} | |
if self.info.adaptive_loss is not None: | |
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges']) | |
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses']) | |
effnet_preprocess = torchvision.transforms.Compose([ | |
torchvision.transforms.Normalize( | |
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) | |
) | |
]) | |
clip_preprocess = torchvision.transforms.Compose([ | |
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC), | |
torchvision.transforms.CenterCrop(224), | |
torchvision.transforms.Normalize( | |
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711) | |
) | |
]) | |
if self.config.training: | |
transforms = torchvision.transforms.Compose([ | |
torchvision.transforms.ToTensor(), | |
torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True), | |
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2) | |
]) | |
else: | |
transforms = None | |
return self.Extras( | |
gdf=gdf, | |
sampling_configs=sampling_configs, | |
transforms=transforms, | |
effnet_preprocess=effnet_preprocess, | |
clip_preprocess=clip_preprocess | |
) | |
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False, | |
eval_image_embeds=False, return_fields=None): | |
conditions = super().get_conditions( | |
batch, models, extras, is_eval, is_unconditional, | |
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img'] | |
) | |
return conditions | |
def setup_models(self, extras: Extras) -> Models: # configure model | |
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16 | |
# EfficientNet encoderin | |
effnet = EfficientNetEncoder() | |
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path) | |
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict']) | |
effnet.eval().requires_grad_(False).to(self.device) | |
del effnet_checkpoint | |
# Previewer | |
previewer = Previewer() | |
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path) | |
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict']) | |
previewer.eval().requires_grad_(False).to(self.device) | |
del previewer_checkpoint | |
def dummy_context(): | |
yield None | |
loading_context = dummy_context if self.config.training else init_empty_weights | |
# Diffusion models | |
with loading_context(): | |
generator_ema = None | |
if self.config.model_version == '3.6B': | |
generator = StageC() | |
if self.config.ema_start_iters is not None: # default setting | |
generator_ema = StageC() | |
elif self.config.model_version == '1B': | |
print('in line 155 1b light model', self.config.model_version ) | |
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]]) | |
if self.config.ema_start_iters is not None and self.config.training: | |
generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]]) | |
else: | |
raise ValueError(f"Unknown model version {self.config.model_version}") | |
if loading_context is dummy_context: | |
generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path)) | |
else: | |
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items(): | |
set_module_tensor_to_device(generator, param_name, "cpu", value=param) | |
generator._init_extra_parameter() | |
generator = generator.to(torch.bfloat16).to(self.device) | |
train_norm = nn.ModuleList() | |
cnt_norm = 0 | |
for mm in generator.modules(): | |
if isinstance(mm, GlobalResponseNorm): | |
train_norm.append(Null_Model()) | |
cnt_norm += 1 | |
train_norm.append(generator.agg_net) | |
train_norm.append(generator.agg_net_up) | |
sdd = torch.load(self.config.ultrapixel_path, map_location='cpu') | |
collect_sd = {} | |
for k, v in sdd.items(): | |
collect_sd[k[7:]] = v | |
train_norm.load_state_dict(collect_sd) | |
# CLIP encoders | |
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name) | |
text_model = CLIPTextModelWithProjection.from_pretrained( self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device) | |
image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device) | |
# PREPARE LORA | |
train_lora = nn.ModuleList() | |
update_tokens = [] | |
for tkn_regex, aggr_regex in self.config.train_tokens: | |
if (tkn_regex.startswith('[') and tkn_regex.endswith(']')) or (tkn_regex.startswith('<') and tkn_regex.endswith('>')): | |
# Insert new token | |
tokenizer.add_tokens([tkn_regex]) | |
# add new zeros embedding | |
new_embedding = torch.zeros_like(text_model.text_model.embeddings.token_embedding.weight.data)[:1] | |
if aggr_regex is not None: # aggregate embeddings to provide an interesting baseline | |
aggr_tokens = [v for k, v in tokenizer.vocab.items() if re.search(aggr_regex, k) is not None] | |
if len(aggr_tokens) > 0: | |
new_embedding = text_model.text_model.embeddings.token_embedding.weight.data[aggr_tokens].mean(dim=0, keepdim=True) | |
elif self.is_main_node: | |
print(f"WARNING: No tokens found for aggregation regex {aggr_regex}. It will be initialized as zeros.") | |
text_model.text_model.embeddings.token_embedding.weight.data = torch.cat([ | |
text_model.text_model.embeddings.token_embedding.weight.data, new_embedding | |
], dim=0) | |
selected_tokens = [len(tokenizer.vocab) - 1] | |
else: | |
selected_tokens = [v for k, v in tokenizer.vocab.items() if re.search(tkn_regex, k) is not None] | |
update_tokens += selected_tokens | |
update_tokens = list(set(update_tokens)) # remove duplicates | |
apply_retoken(text_model.text_model.embeddings.token_embedding, update_tokens) | |
apply_lora(generator, filters=self.config.module_filters, rank=self.config.rank) | |
for module in generator.modules(): | |
if isinstance(module, LoRA) or (hasattr(module, '_fsdp_wrapped_module') and isinstance(module._fsdp_wrapped_module, LoRA)): | |
train_lora.append(module) | |
train_lora.append(text_model.text_model.embeddings.token_embedding.parametrizations.weight[0]) | |
if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_lora.safetensors')): | |
sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_lora.safetensors'), map_location='cpu') | |
collect_sd = {} | |
for k, v in sdd.items(): | |
collect_sd[k[7:]] = v | |
train_lora.load_state_dict(collect_sd, strict=True) | |
train_norm.to(self.device).train().requires_grad_(True) | |
if generator_ema is not None: | |
generator_ema.load_state_dict(load_or_fail(self.config.generator_checkpoint_path)) | |
generator_ema._init_extra_parameter() | |
pretrained_pth = os.path.join(self.config.output_path, self.config.experiment_id, 'generator.safetensors') | |
if os.path.exists(pretrained_pth): | |
generator_ema.load_state_dict(torch.load(pretrained_pth, map_location='cpu')) | |
generator_ema.eval().requires_grad_(False) | |
check_nan_inmodel(generator, 'generator') | |
if self.config.use_ddp and self.config.training: | |
train_lora = DDP(train_lora, device_ids=[self.device], find_unused_parameters=True) | |
return self.Models( | |
effnet=effnet, previewer=previewer, train_norm = train_norm, | |
generator=generator, generator_ema=generator_ema, | |
tokenizer=tokenizer, text_model=text_model, image_model=image_model, | |
train_lora=train_lora | |
) | |
def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers: | |
params = [] | |
params += list(models.train_lora.module.parameters()) | |
optimizer = optim.AdamW(params, lr=self.config.lr) | |
return self.Optimizers(generator=optimizer) | |
def ema_update(self, ema_model, source_model, beta): | |
for param_src, param_ema in zip(source_model.parameters(), ema_model.parameters()): | |
param_ema.data.mul_(beta).add_(param_src.data, alpha = 1 - beta) | |
def sync_ema(self, ema_model): | |
print('sync ema', torch.distributed.get_world_size()) | |
for param in ema_model.parameters(): | |
torch.distributed.all_reduce(param.data, op=torch.distributed.ReduceOp.SUM) | |
param.data /= torch.distributed.get_world_size() | |
def setup_optimizers_backup(self, extras: Extras, models: Models) -> TrainingCore.Optimizers: | |
optimizer = optim.AdamW( | |
models.generator.up_blocks.parameters() , | |
lr=self.config.lr) | |
optimizer = self.load_optimizer(optimizer, 'generator_optim', | |
fsdp_model=models.generator if self.config.use_fsdp else None) | |
return self.Optimizers(generator=optimizer) | |
def setup_schedulers(self, extras: Extras, models: Models, optimizers: TrainingCore.Optimizers) -> Schedulers: | |
scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates) | |
scheduler.last_epoch = self.info.total_steps | |
return self.Schedulers(generator=scheduler) | |
def setup_data(self, extras: Extras) -> WarpCore.Data: | |
# SETUP DATASET | |
dataset_path = self.config.webdataset_path | |
dataset = mydist_dataset(dataset_path, self.config.tmp_prompt, \ | |
torchvision.transforms.ToTensor() if self.config.multi_aspect_ratio is not None \ | |
else extras.transforms) | |
# SETUP DATALOADER | |
real_batch_size = self.config.batch_size // (self.world_size * self.config.grad_accum_steps) | |
sampler = DistributedSampler(dataset, rank=self.process_id, num_replicas = self.world_size, shuffle=True) | |
dataloader = DataLoader( | |
dataset, batch_size=real_batch_size, num_workers=4, pin_memory=True, | |
collate_fn=identity if self.config.multi_aspect_ratio is not None else None, | |
sampler = sampler | |
) | |
if self.is_main_node: | |
print(f"Training with batch size {self.config.batch_size} ({real_batch_size}/GPU)") | |
if self.config.multi_aspect_ratio is not None: | |
aspect_ratios = [float(Fraction(f)) for f in self.config.multi_aspect_ratio] | |
dataloader_iterator = Bucketeer(dataloader, density=[ss*ss for ss in self.config.image_size] , factor=32, | |
ratios=aspect_ratios, p_random_ratio=self.config.bucketeer_random_ratio, | |
interpolate_nearest=False) # , use_smartcrop=True) | |
else: | |
dataloader_iterator = iter(dataloader) | |
return self.Data(dataset=dataset, dataloader=dataloader, iterator=dataloader_iterator, sampler=sampler) | |
def setup_ddp(self, experiment_id, single_gpu=False, rank=0): | |
if not single_gpu: | |
local_rank = rank | |
process_id = rank | |
world_size = get_world_size() | |
self.process_id = process_id | |
self.is_main_node = process_id == 0 | |
self.device = torch.device(local_rank) | |
self.world_size = world_size | |
os.environ['MASTER_ADDR'] = 'localhost' | |
os.environ['MASTER_PORT'] = '14443' | |
torch.cuda.set_device(local_rank) | |
init_process_group( | |
backend="nccl", | |
rank=local_rank, | |
world_size=world_size, | |
# init_method=init_method, | |
) | |
print(f"[GPU {process_id}] READY") | |
else: | |
self.is_main_node = rank == 0 | |
self.process_id = rank | |
self.device = torch.device('cuda:0') | |
self.world_size = 1 | |
print("Running in single thread, DDP not enabled.") | |
# Training loop -------------------------------- | |
def get_target_lr_size(self, ratio, std_size=24): | |
w, h = int(std_size / math.sqrt(ratio)), int(std_size * math.sqrt(ratio)) | |
return (h * 32 , w * 32) | |
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models): | |
batch = data | |
ratio = batch['images'].shape[-2] / batch['images'].shape[-1] | |
shape_lr = self.get_target_lr_size(ratio) | |
with torch.no_grad(): | |
conditions = self.get_conditions(batch, models, extras) | |
latents = self.encode_latents(batch, models, extras) | |
latents_lr = self.encode_latents(batch, models, extras,target_size=shape_lr) | |
flag_lr = random.random() < 0.5 or self.info.iter <5000 | |
if flag_lr: | |
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1) | |
else: | |
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1) | |
if not flag_lr: | |
noised_lr, noise_lr, target_lr, logSNR_lr, noise_cond_lr, loss_weight_lr = \ | |
extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1, t=torch.ones(latents.shape[0]).to(latents.device)*0.05, ) | |
with torch.cuda.amp.autocast(dtype=torch.bfloat16): | |
if not flag_lr: | |
with torch.no_grad(): | |
_, lr_enc_guide, lr_dec_guide = models.generator(noised_lr, noise_cond_lr, reuire_f=True, **conditions) | |
pred = models.generator(noised, noise_cond, reuire_f=False, lr_guide=(lr_enc_guide, lr_dec_guide) if not flag_lr else None , **conditions) | |
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3]) | |
loss_adjusted = (loss * loss_weight ).mean() / self.config.grad_accum_steps | |
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): | |
extras.gdf.loss_weight.update_buckets(logSNR, loss) | |
return loss, loss_adjusted | |
def backward_pass(self, update, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers): | |
if update: | |
torch.distributed.barrier() | |
loss_adjusted.backward() | |
grad_norm = nn.utils.clip_grad_norm_(models.train_lora.module.parameters(), 1.0) | |
optimizers_dict = optimizers.to_dict() | |
for k in optimizers_dict: | |
if k != 'training': | |
optimizers_dict[k].step() | |
schedulers_dict = schedulers.to_dict() | |
for k in schedulers_dict: | |
if k != 'training': | |
schedulers_dict[k].step() | |
for k in optimizers_dict: | |
if k != 'training': | |
optimizers_dict[k].zero_grad(set_to_none=True) | |
self.info.total_steps += 1 | |
else: | |
loss_adjusted.backward() | |
grad_norm = torch.tensor(0.0).to(self.device) | |
return grad_norm | |
def models_to_save(self): | |
return ['generator', 'generator_ema', 'trans_inr', 'trans_inr_ema'] | |
def encode_latents(self, batch: dict, models: Models, extras: Extras, target_size=None) -> torch.Tensor: | |
images = batch['images'].to(self.device) | |
if target_size is not None: | |
images = F.interpolate(images, target_size) | |
return models.effnet(extras.effnet_preprocess(images)) | |
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor: | |
return models.previewer(latents) | |
def __init__(self, rank=0, config_file_path=None, config_dict=None, device="cpu", training=True, world_size=1, ): | |
self.is_main_node = (rank == 0) | |
self.config: self.Config = self.setup_config(config_file_path, config_dict, training) | |
self.setup_ddp(self.config.experiment_id, single_gpu=world_size <= 1, rank=rank) | |
self.info: self.Info = self.setup_info() | |
print('in line 292', self.config.experiment_id, rank, world_size <= 1) | |
p = [i for i in range( 2 * 768 // 32)] | |
p = [num / sum(p) for num in p] | |
self.rand_pro = p | |
self.res_list = [o for o in range(800, 2336, 32)] | |
def __call__(self, single_gpu=False): | |
if self.config.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
if self.is_main_node: | |
print() | |
print("**STARTIG JOB WITH CONFIG:**") | |
print(yaml.dump(self.config.to_dict(), default_flow_style=False)) | |
print("------------------------------------") | |
print() | |
print("**INFO:**") | |
print(yaml.dump(vars(self.info), default_flow_style=False)) | |
print("------------------------------------") | |
print() | |
print('in line 308', self.is_main_node, self.is_main_node, self.process_id, self.device ) | |
# SETUP STUFF | |
extras = self.setup_extras_pre() | |
assert extras is not None, "setup_extras_pre() must return a DTO" | |
data = self.setup_data(extras) | |
assert data is not None, "setup_data() must return a DTO" | |
if self.is_main_node: | |
print("**DATA:**") | |
print(yaml.dump({k:type(v).__name__ for k, v in data.to_dict().items()}, default_flow_style=False)) | |
print("------------------------------------") | |
print() | |
models = self.setup_models(extras) | |
assert models is not None, "setup_models() must return a DTO" | |
if self.is_main_node: | |
print("**MODELS:**") | |
print(yaml.dump({ | |
k:f"{type(v).__name__} - {f'trainable params {sum(p.numel() for p in v.parameters() if p.requires_grad)}' if isinstance(v, nn.Module) else 'Not a nn.Module'}" for k, v in models.to_dict().items() | |
}, default_flow_style=False)) | |
print("------------------------------------") | |
print() | |
optimizers = self.setup_optimizers(extras, models) | |
assert optimizers is not None, "setup_optimizers() must return a DTO" | |
if self.is_main_node: | |
print("**OPTIMIZERS:**") | |
print(yaml.dump({k:type(v).__name__ for k, v in optimizers.to_dict().items()}, default_flow_style=False)) | |
print("------------------------------------") | |
print() | |
schedulers = self.setup_schedulers(extras, models, optimizers) | |
assert schedulers is not None, "setup_schedulers() must return a DTO" | |
if self.is_main_node: | |
print("**SCHEDULERS:**") | |
print(yaml.dump({k:type(v).__name__ for k, v in schedulers.to_dict().items()}, default_flow_style=False)) | |
print("------------------------------------") | |
print() | |
post_extras =self.setup_extras_post(extras, models, optimizers, schedulers) | |
assert post_extras is not None, "setup_extras_post() must return a DTO" | |
extras = self.Extras.from_dict({ **extras.to_dict(),**post_extras.to_dict() }) | |
if self.is_main_node: | |
print("**EXTRAS:**") | |
print(yaml.dump({k:f"{v}" for k, v in extras.to_dict().items()}, default_flow_style=False)) | |
print("------------------------------------") | |
print() | |
# ------- | |
# TRAIN | |
if self.is_main_node: | |
print("**TRAINING STARTING...**") | |
self.train(data, extras, models, optimizers, schedulers) | |
if single_gpu is False: | |
barrier() | |
destroy_process_group() | |
if self.is_main_node: | |
print() | |
print("------------------------------------") | |
print() | |
print("**TRAINING COMPLETE**") | |
if self.config.wandb_project is not None: | |
wandb.alert(title=f"Training {self.info.wandb_run_id} finished", text=f"Training {self.info.wandb_run_id} finished") | |
def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, optimizers: TrainingCore.Optimizers, | |
schedulers: WarpCore.Schedulers): | |
start_iter = self.info.iter + 1 | |
max_iters = self.config.updates * self.config.grad_accum_steps | |
if self.is_main_node: | |
print(f"STARTING AT STEP: {start_iter}/{max_iters}") | |
if self.is_main_node: | |
create_folder_if_necessary(f'{self.config.output_path}/{self.config.experiment_id}/') | |
if 'generator' in self.models_to_save(): | |
models.generator.train() | |
iter_cnt = 0 | |
epoch_cnt = 0 | |
models.train_norm.train() | |
while True: | |
epoch_cnt += 1 | |
if self.world_size > 1: | |
data.sampler.set_epoch(epoch_cnt) | |
for ggg in range(len(data.dataloader)): | |
iter_cnt += 1 | |
# FORWARD PASS | |
loss, loss_adjusted = self.forward_pass(next(data.iterator), extras, models) | |
# # BACKWARD PASS | |
grad_norm = self.backward_pass( | |
iter_cnt % self.config.grad_accum_steps == 0 or iter_cnt == max_iters, loss_adjusted, | |
models, optimizers, schedulers | |
) | |
self.info.iter = iter_cnt | |
self.info.ema_loss = loss.mean().item() if self.info.ema_loss is None else self.info.ema_loss * 0.99 + loss.mean().item() * 0.01 | |
if self.is_main_node and np.isnan(loss.mean().item()) or np.isnan(grad_norm.item()): | |
print(f"gggg NaN value encountered in training run {self.info.wandb_run_id}", \ | |
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}") | |
if self.is_main_node: | |
logs = { | |
'loss': self.info.ema_loss, | |
'backward_loss': loss_adjusted.mean().item(), | |
'ema_loss': self.info.ema_loss, | |
'raw_ori_loss': loss.mean().item(), | |
'grad_norm': grad_norm.item(), | |
'lr': optimizers.generator.param_groups[0]['lr'] if optimizers.generator is not None else 0, | |
'total_steps': self.info.total_steps, | |
} | |
print(iter_cnt, max_iters, logs, epoch_cnt, ) | |
if iter_cnt == 1 or iter_cnt % (self.config.save_every ) == 0 or iter_cnt == max_iters: | |
if np.isnan(loss.mean().item()): | |
if self.is_main_node and self.config.wandb_project is not None: | |
print(f"NaN value encountered in training run {self.info.wandb_run_id}", \ | |
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}") | |
else: | |
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): | |
self.info.adaptive_loss = { | |
'bucket_ranges': extras.gdf.loss_weight.bucket_ranges.tolist(), | |
'bucket_losses': extras.gdf.loss_weight.bucket_losses.tolist(), | |
} | |
if self.is_main_node and iter_cnt % (self.config.save_every * self.config.grad_accum_steps) == 0: | |
print('save model', iter_cnt, iter_cnt % (self.config.save_every * self.config.grad_accum_steps), self.config.save_every, self.config.grad_accum_steps ) | |
torch.save(models.train_lora.state_dict(), \ | |
f'{self.config.output_path}/{self.config.experiment_id}/train_lora.safetensors') | |
torch.save(models.train_lora.state_dict(), \ | |
f'{self.config.output_path}/{self.config.experiment_id}/train_lora_{iter_cnt}.safetensors') | |
if iter_cnt == 1 or iter_cnt % (self.config.save_every* self.config.grad_accum_steps) == 0 or iter_cnt == max_iters: | |
if self.is_main_node: | |
self.sample(models, data, extras) | |
if False: | |
param_changes = {name: (param - initial_params[name]).norm().item() for name, param in models.train_norm.named_parameters()} | |
threshold = sorted(param_changes.values(), reverse=True)[int(len(param_changes) * 0.1)] # top 10% | |
important_params = [name for name, change in param_changes.items() if change > threshold] | |
print(important_params, threshold, len(param_changes), self.process_id) | |
json.dump(important_params, open(f'{self.config.output_path}/{self.config.experiment_id}/param.json', 'w'), indent=4) | |
if self.info.iter >= max_iters: | |
break | |
def sample(self, models: Models, data: WarpCore.Data, extras: Extras): | |
models.generator.eval() | |
models.train_norm.eval() | |
with torch.no_grad(): | |
batch = next(data.iterator) | |
ratio = batch['images'].shape[-2] / batch['images'].shape[-1] | |
shape_lr = self.get_target_lr_size(ratio) | |
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False) | |
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False) | |
latents = self.encode_latents(batch, models, extras) | |
latents_lr = self.encode_latents(batch, models, extras, target_size = shape_lr) | |
if self.is_main_node: | |
with torch.cuda.amp.autocast(dtype=torch.bfloat16): | |
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample( | |
models.generator, conditions, | |
latents.shape, latents_lr.shape, | |
unconditions, device=self.device, **extras.sampling_configs | |
) | |
sampled_ema = sampled | |
sampled_ema_lr = sampled_lr | |
if self.is_main_node: | |
print('sampling results hr latent shape ', latents.shape, 'lr latent shape', latents_lr.shape, ) | |
noised_images = torch.cat( | |
[self.decode_latents(latents[i:i + 1].float(), batch, models, extras) for i in range(len(latents))], dim=0) | |
sampled_images = torch.cat( | |
[self.decode_latents(sampled[i:i + 1].float(), batch, models, extras) for i in range(len(sampled))], dim=0) | |
sampled_images_ema = torch.cat( | |
[self.decode_latents(sampled_ema[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_ema))], | |
dim=0) | |
noised_images_lr = torch.cat( | |
[self.decode_latents(latents_lr[i:i + 1].float(), batch, models, extras) for i in range(len(latents_lr))], dim=0) | |
sampled_images_lr = torch.cat( | |
[self.decode_latents(sampled_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_lr))], dim=0) | |
sampled_images_ema_lr = torch.cat( | |
[self.decode_latents(sampled_ema_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_ema_lr))], | |
dim=0) | |
images = batch['images'] | |
if images.size(-1) != noised_images.size(-1) or images.size(-2) != noised_images.size(-2): | |
images = nn.functional.interpolate(images, size=noised_images.shape[-2:], mode='bicubic') | |
images_lr = nn.functional.interpolate(images, size=noised_images_lr.shape[-2:], mode='bicubic') | |
collage_img = torch.cat([ | |
torch.cat([i for i in images.cpu()], dim=-1), | |
torch.cat([i for i in noised_images.cpu()], dim=-1), | |
torch.cat([i for i in sampled_images.cpu()], dim=-1), | |
torch.cat([i for i in sampled_images_ema.cpu()], dim=-1), | |
], dim=-2) | |
collage_img_lr = torch.cat([ | |
torch.cat([i for i in images_lr.cpu()], dim=-1), | |
torch.cat([i for i in noised_images_lr.cpu()], dim=-1), | |
torch.cat([i for i in sampled_images_lr.cpu()], dim=-1), | |
torch.cat([i for i in sampled_images_ema_lr.cpu()], dim=-1), | |
], dim=-2) | |
torchvision.utils.save_image(collage_img, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}.jpg') | |
torchvision.utils.save_image(collage_img_lr, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}_lr.jpg') | |
captions = batch['captions'] | |
if self.config.wandb_project is not None: | |
log_data = [ | |
[captions[i]] + [wandb.Image(sampled_images[i])] + [wandb.Image(sampled_images_ema[i])] + [ | |
wandb.Image(images[i])] for i in range(len(images))] | |
log_table = wandb.Table(data=log_data, columns=["Captions", "Sampled", "Sampled EMA", "Orig"]) | |
wandb.log({"Log": log_table}) | |
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): | |
plt.plot(extras.gdf.loss_weight.bucket_ranges, extras.gdf.loss_weight.bucket_losses[:-1]) | |
plt.ylabel('Raw Loss') | |
plt.ylabel('LogSNR') | |
wandb.log({"Loss/LogSRN": plt}) | |
models.generator.train() | |
models.train_norm.train() | |
print('finish sampling') | |
def sample_fortest(self, models: Models, extras: Extras, hr_shape, lr_shape, batch, eval_image_embeds=False): | |
models.generator.eval() | |
models.trans_inr.eval() | |
with torch.no_grad(): | |
if self.is_main_node: | |
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=eval_image_embeds) | |
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False) | |
with torch.cuda.amp.autocast(dtype=torch.bfloat16): | |
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample( | |
models.generator, conditions, | |
hr_shape, lr_shape, | |
unconditions, device=self.device, **extras.sampling_configs | |
) | |
if models.generator_ema is not None: | |
*_, (sampled_ema, _, _, sampled_ema_lr) = extras.gdf.sample( | |
models.generator_ema, conditions, | |
latents.shape, latents_lr.shape, | |
unconditions, device=self.device, **extras.sampling_configs | |
) | |
else: | |
sampled_ema = sampled | |
sampled_ema_lr = sampled_lr | |
return sampled, sampled_lr | |
def main_worker(rank, cfg): | |
print("Launching Script in main worker") | |
warpcore = WurstCore( | |
config_file_path=cfg, rank=rank, world_size = get_world_size() | |
) | |
# core.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD | |
# RUN TRAINING | |
warpcore(get_world_size()==1) | |
if __name__ == '__main__': | |
if get_master_ip() == "127.0.0.1": | |
mp.spawn(main_worker, nprocs=get_world_size(), args=(sys.argv[1] if len(sys.argv) > 1 else None, )) | |
else: | |
main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, ) | |