import torch import torch.nn as nn import torch.nn.functional as F import math from einops import rearrange from modules.speed_util import checkpoint class Linear(torch.nn.Linear): def reset_parameters(self): return None class Conv2d(torch.nn.Conv2d): def reset_parameters(self): return None class AttnBlock_lrfuse_backup(nn.Module): def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, use_checkpoint=True): super().__init__() self.self_attn = self_attn self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.attention = Attention2D(c, nhead, dropout) self.kv_mapper = nn.Sequential( nn.SiLU(), Linear(c_cond, c) ) self.fuse_mapper = nn.Sequential( nn.SiLU(), Linear(c_cond, c) ) self.use_checkpoint = use_checkpoint def forward(self, hr, lr): return checkpoint(self._forward, (hr, lr), self.paramters(), self.use_checkpoint) def _forward(self, hr, lr): res = hr hr = self.kv_mapper(rearrange(hr, 'b c h w -> b (h w ) c')) lr_fuse = self.attention(self.norm(lr), hr, self_attn=False) + lr lr_fuse = self.fuse_mapper(rearrange(lr_fuse, 'b c h w -> b (h w ) c')) hr = self.attention(self.norm(res), lr_fuse, self_attn=False) + res return hr class AttnBlock_lrfuse(nn.Module): def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, kernel_size=3, use_checkpoint=True): super().__init__() self.self_attn = self_attn self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.attention = Attention2D(c, nhead, dropout) self.kv_mapper = nn.Sequential( nn.SiLU(), Linear(c_cond, c) ) self.depthwise = Conv2d(c, c , kernel_size=kernel_size, padding=kernel_size // 2, groups=c) self.channelwise = nn.Sequential( Linear(c + c, c ), nn.GELU(), GlobalResponseNorm(c ), nn.Dropout(dropout), Linear(c , c) ) self.use_checkpoint = use_checkpoint def forward(self, hr, lr): return checkpoint(self._forward, (hr, lr), self.parameters(), self.use_checkpoint) def _forward(self, hr, lr): res = hr hr = self.kv_mapper(rearrange(hr, 'b c h w -> b (h w ) c')) lr_fuse = self.attention(self.norm(lr), hr, self_attn=False) + lr lr_fuse = torch.nn.functional.interpolate(lr_fuse.float(), res.shape[2:]) #print('in line 65', lr_fuse.shape, res.shape) media = torch.cat((self.depthwise(lr_fuse), res), dim=1) out = self.channelwise(media.permute(0,2,3,1)).permute(0,3,1,2) + res return out class Attention2D(nn.Module): def __init__(self, c, nhead, dropout=0.0): super().__init__() self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True) def forward(self, x, kv, self_attn=False): orig_shape = x.shape x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4 if self_attn: #print('in line 23 algong self att ', kv.shape, x.shape) kv = torch.cat([x, kv], dim=1) #if x.shape[1] > 48 * 48 and not self.training: # x = x * math.sqrt(math.log(x.shape[1] , 24*24)) x = self.attn(x, kv, kv, need_weights=False)[0] x = x.permute(0, 2, 1).view(*orig_shape) return x class Attention2D_splitpatch(nn.Module): def __init__(self, c, nhead, dropout=0.0): super().__init__() self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True) def forward(self, x, kv, self_attn=False): orig_shape = x.shape #x = rearrange(x, 'b c h w -> b c (nh wh) (nw ww)', wh=24, ww=24, nh=orig_shape[-2] // 24, nh=orig_shape[-1] // 24,) x = rearrange(x, 'b c (nh wh) (nw ww) -> (b nh nw) (wh ww) c', wh=24, ww=24, nh=orig_shape[-2] // 24, nw=orig_shape[-1] // 24,) #print('in line 168', x.shape) #x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4 if self_attn: #print('in line 23 algong self att ', kv.shape, x.shape) num = (orig_shape[-2] // 24) * (orig_shape[-1] // 24) kv = torch.cat([x, kv.repeat(num, 1, 1)], dim=1) #if x.shape[1] > 48 * 48 and not self.training: # x = x * math.sqrt(math.log(x.shape[1] / math.sqrt(16), 24*24)) x = self.attn(x, kv, kv, need_weights=False)[0] x = rearrange(x, ' (b nh nw) (wh ww) c -> b c (nh wh) (nw ww)', b=orig_shape[0], wh=24, ww=24, nh=orig_shape[-2] // 24, nw=orig_shape[-1] // 24) #x = x.permute(0, 2, 1).view(*orig_shape) return x class Attention2D_extra(nn.Module): def __init__(self, c, nhead, dropout=0.0): super().__init__() self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True) def forward(self, x, kv, extra_emb=None, self_attn=False): orig_shape = x.shape x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4 num_x = x.shape[1] if extra_emb is not None: ori_extra_shape = extra_emb.shape extra_emb = extra_emb.view(extra_emb.size(0), extra_emb.size(1), -1).permute(0, 2, 1) x = torch.cat((x, extra_emb), dim=1) if self_attn: #print('in line 23 algong self att ', kv.shape, x.shape) kv = torch.cat([x, kv], dim=1) x = self.attn(x, kv, kv, need_weights=False)[0] img = x[:, :num_x, :].permute(0, 2, 1).view(*orig_shape) if extra_emb is not None: fix = x[:, num_x:, :].permute(0, 2, 1).view(*ori_extra_shape) return img, fix else: return img class AttnBlock_extraq(nn.Module): def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): super().__init__() self.self_attn = self_attn self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) #self.norm2 = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.attention = Attention2D_extra(c, nhead, dropout) self.kv_mapper = nn.Sequential( nn.SiLU(), Linear(c_cond, c) ) # norm2 initialization in generator in init extra parameter def forward(self, x, kv, extra_emb=None): #print('in line 84', x.shape, kv.shape, self.self_attn, extra_emb if extra_emb is None else extra_emb.shape) #in line 84 torch.Size([1, 1536, 32, 32]) torch.Size([1, 85, 1536]) True None #if extra_emb is not None: kv = self.kv_mapper(kv) if extra_emb is not None: res_x, res_extra = self.attention(self.norm(x), kv, extra_emb=self.norm2(extra_emb), self_attn=self.self_attn) x = x + res_x extra_emb = extra_emb + res_extra return x, extra_emb else: x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn) return x class AttnBlock_latent2ex(nn.Module): def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): super().__init__() self.self_attn = self_attn self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.attention = Attention2D(c, nhead, dropout) self.kv_mapper = nn.Sequential( nn.SiLU(), Linear(c_cond, c) ) def forward(self, x, kv): #print('in line 84', x.shape, kv.shape, self.self_attn) kv = F.interpolate(kv.float(), x.shape[2:]) kv = kv.view(kv.size(0), kv.size(1), -1).permute(0, 2, 1) kv = self.kv_mapper(kv) x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn) return x class LayerNorm2d(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, x): return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) class AttnBlock_crossbranch(nn.Module): def __init__(self, attnmodule, c, c_cond, nhead, self_attn=True, dropout=0.0): super().__init__() self.attn = AttnBlock(c, c_cond, nhead, self_attn, dropout) #print('in line 108', attnmodule.device) self.attn.load_state_dict(attnmodule.state_dict()) self.norm1 = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.channelwise1 = nn.Sequential( Linear(c *2, c ), nn.GELU(), GlobalResponseNorm(c ), nn.Dropout(dropout), Linear(c, c) ) self.channelwise2 = nn.Sequential( Linear(c *2, c ), nn.GELU(), GlobalResponseNorm(c ), nn.Dropout(dropout), Linear(c, c) ) self.c = c def forward(self, x, kv, main_x): #print('in line 84', x.shape, kv.shape, main_x.shape, self.c) x = self.channelwise1(torch.cat((x, F.interpolate(main_x.float(), x.shape[2:])), dim=1).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + x x = self.attn(x, kv) main_x = self.channelwise2(torch.cat((main_x, F.interpolate(x.float(), main_x.shape[2:])), dim=1).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) + main_x return main_x, x class GlobalResponseNorm(nn.Module): "from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105" def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, x): Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) return self.gamma * (x * Nx) + self.beta + x class ResBlock(nn.Module): def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0, use_checkpoint =True): # , num_heads=4, expansion=2): super().__init__() self.depthwise = Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) # self.depthwise = SAMBlock(c, num_heads, expansion) self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.channelwise = nn.Sequential( Linear(c + c_skip, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), Linear(c * 4, c) ) self.use_checkpoint = use_checkpoint def forward(self, x, x_skip=None): if x_skip is not None: return checkpoint(self._forward_skip, (x, x_skip), self.parameters(), self.use_checkpoint) else: #print('in line 298', x.shape) return checkpoint(self._forward_woskip, (x, ), self.parameters(), self.use_checkpoint) def _forward_skip(self, x, x_skip): x_res = x x = self.norm(self.depthwise(x)) if x_skip is not None: x = torch.cat([x, x_skip], dim=1) x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) return x + x_res def _forward_woskip(self, x): x_res = x x = self.norm(self.depthwise(x)) x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) return x + x_res class AttnBlock(nn.Module): def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0, use_checkpoint=True): super().__init__() self.self_attn = self_attn self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.attention = Attention2D(c, nhead, dropout) self.kv_mapper = nn.Sequential( nn.SiLU(), Linear(c_cond, c) ) self.use_checkpoint = use_checkpoint def forward(self, x, kv): return checkpoint(self._forward, (x, kv), self.parameters(), self.use_checkpoint) def _forward(self, x, kv): kv = self.kv_mapper(kv) res = self.attention(self.norm(x), kv, self_attn=self.self_attn) #print(torch.unique(res), torch.unique(x), self.self_attn) #scale = math.sqrt(math.log(x.shape[-2] * x.shape[-1], 24*24)) x = x + res return x class AttnBlock_mytest(nn.Module): def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): super().__init__() self.self_attn = self_attn self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.attention = Attention2D(c, nhead, dropout) self.kv_mapper = nn.Sequential( nn.SiLU(), nn.Linear(c_cond, c) ) def forward(self, x, kv): kv = self.kv_mapper(kv) x = x + self.attention(self.norm(x), kv, self_attn=self.self_attn) return x class FeedForwardBlock(nn.Module): def __init__(self, c, dropout=0.0): super().__init__() self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.channelwise = nn.Sequential( Linear(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), Linear(c * 4, c) ) def forward(self, x): x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) return x class TimestepBlock(nn.Module): def __init__(self, c, c_timestep, conds=['sca'], use_checkpoint=True): super().__init__() self.mapper = Linear(c_timestep, c * 2) self.conds = conds for cname in conds: setattr(self, f"mapper_{cname}", Linear(c_timestep, c * 2)) self.use_checkpoint = use_checkpoint def forward(self, x, t): return checkpoint(self._forward, (x, t), self.parameters(), self.use_checkpoint) def _forward(self, x, t): #print('in line 284', x.shape, t.shape, self.conds) #in line 284 torch.Size([4, 2048, 19, 29]) torch.Size([4, 192]) ['sca', 'crp'] t = t.chunk(len(self.conds) + 1, dim=1) a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1) for i, c in enumerate(self.conds): ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1) a, b = a + ac, b + bc return x * (1 + a) + b