import torch import torch.nn as nn import torch.nn.functional as F import math from einops import rearrange import torch.fft as fft class Linear(torch.nn.Linear): def reset_parameters(self): return None class Conv2d(torch.nn.Conv2d): def reset_parameters(self): return None class Attention2D(nn.Module): def __init__(self, c, nhead, dropout=0.0): super().__init__() self.attn = nn.MultiheadAttention(c, nhead, dropout=dropout, bias=True, batch_first=True) def forward(self, x, kv, self_attn=False): orig_shape = x.shape x = x.view(x.size(0), x.size(1), -1).permute(0, 2, 1) # Bx4xHxW -> Bx(HxW)x4 if self_attn: #print('in line 23 algong self att ', kv.shape, x.shape) kv = torch.cat([x, kv], dim=1) #if x.shape[1] >= 72 * 72: # x = x * math.sqrt(math.log(64*64, 24*24)) x = self.attn(x, kv, kv, need_weights=False)[0] x = x.permute(0, 2, 1).view(*orig_shape) return x class LayerNorm2d(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, x): return super().forward(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) class GlobalResponseNorm(nn.Module): "from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105" def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, x): Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) return self.gamma * (x * Nx) + self.beta + x class ResBlock(nn.Module): def __init__(self, c, c_skip=0, kernel_size=3, dropout=0.0): # , num_heads=4, expansion=2): super().__init__() self.depthwise = Conv2d(c, c, kernel_size=kernel_size, padding=kernel_size // 2, groups=c) # self.depthwise = SAMBlock(c, num_heads, expansion) self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.channelwise = nn.Sequential( Linear(c + c_skip, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), Linear(c * 4, c) ) def forward(self, x, x_skip=None): x_res = x x = self.norm(self.depthwise(x)) if x_skip is not None: x = torch.cat([x, x_skip], dim=1) x = self.channelwise(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) return x + x_res class AttnBlock(nn.Module): def __init__(self, c, c_cond, nhead, self_attn=True, dropout=0.0): super().__init__() self.self_attn = self_attn self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.attention = Attention2D(c, nhead, dropout) self.kv_mapper = nn.Sequential( nn.SiLU(), Linear(c_cond, c) ) def forward(self, x, kv): kv = self.kv_mapper(kv) res = self.attention(self.norm(x), kv, self_attn=self.self_attn) #print(torch.unique(res), torch.unique(x), self.self_attn) #scale = math.sqrt(math.log(x.shape[-2] * x.shape[-1], 24*24)) x = x + res return x class FeedForwardBlock(nn.Module): def __init__(self, c, dropout=0.0): super().__init__() self.norm = LayerNorm2d(c, elementwise_affine=False, eps=1e-6) self.channelwise = nn.Sequential( Linear(c, c * 4), nn.GELU(), GlobalResponseNorm(c * 4), nn.Dropout(dropout), Linear(c * 4, c) ) def forward(self, x): x = x + self.channelwise(self.norm(x).permute(0, 2, 3, 1)).permute(0, 3, 1, 2) return x class TimestepBlock(nn.Module): def __init__(self, c, c_timestep, conds=['sca']): super().__init__() self.mapper = Linear(c_timestep, c * 2) self.conds = conds for cname in conds: setattr(self, f"mapper_{cname}", Linear(c_timestep, c * 2)) def forward(self, x, t): t = t.chunk(len(self.conds) + 1, dim=1) a, b = self.mapper(t[0])[:, :, None, None].chunk(2, dim=1) for i, c in enumerate(self.conds): ac, bc = getattr(self, f"mapper_{c}")(t[i + 1])[:, :, None, None].chunk(2, dim=1) a, b = a + ac, b + bc return x * (1 + a) + b