|
import spaces |
|
import os |
|
import torch |
|
import random |
|
from huggingface_hub import snapshot_download |
|
from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline |
|
from kolors.models.modeling_chatglm import ChatGLMModel |
|
from kolors.models.tokenization_chatglm import ChatGLMTokenizer |
|
from diffusers import UNet2DConditionModel, AutoencoderKL |
|
from diffusers import EulerDiscreteScheduler |
|
import gradio as gr |
|
|
|
|
|
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") |
|
|
|
|
|
text_encoder = ChatGLMModel.from_pretrained( |
|
os.path.join(ckpt_dir, 'text_encoder'), |
|
torch_dtype=torch.float16).half() |
|
tokenizer = ChatGLMTokenizer.from_pretrained(os.path.join(ckpt_dir, 'text_encoder')) |
|
vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), revision=None).half() |
|
scheduler = EulerDiscreteScheduler.from_pretrained(os.path.join(ckpt_dir, "scheduler")) |
|
unet = UNet2DConditionModel.from_pretrained(os.path.join(ckpt_dir, "unet"), revision=None).half() |
|
|
|
pipe = StableDiffusionXLPipeline( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
force_zeros_for_empty_prompt=False) |
|
pipe = pipe.to("cuda") |
|
|
|
|
|
|
|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import torch |
|
from diffusers import AutoPipelineForText2Image |
|
|
|
import spaces |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
dtype = torch.float16 |
|
|
|
|
|
repo = "SG161222/RealVisXL_V4.0" |
|
|
|
pipeline_real = AutoPipelineForText2Image.from_pretrained(repo, torch_dtype=torch.float16).to('cuda') |
|
|
|
|
|
def adjust_to_nearest_multiple(value, divisor=8): |
|
""" |
|
Adjusts the input value to the nearest multiple of the divisor. |
|
|
|
Args: |
|
value (int): The value to adjust. |
|
divisor (int): The divisor to which the value should be divisible. Default is 8. |
|
Returns: |
|
int: The nearest multiple of the divisor. |
|
""" |
|
if value % divisor == 0: |
|
return value |
|
else: |
|
|
|
return round(value / divisor) * divisor |
|
|
|
def adjust_dimensions(height, width): |
|
""" |
|
Adjusts the height and width to be divisible by 8. |
|
|
|
Args: |
|
height (int): The height to adjust. |
|
width (int): The width to adjust. |
|
Returns: |
|
tuple: Adjusted height and width. |
|
""" |
|
new_height = adjust_to_nearest_multiple(height) |
|
new_width = adjust_to_nearest_multiple(width) |
|
|
|
return new_height, new_width |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 4100 |
|
|
|
|
|
@spaces.GPU(duration=100) |
|
def generate_image(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, num_images_per_prompt, use_random_seed, seed, progress=gr.Progress(track_tqdm=True)): |
|
if use_random_seed: |
|
seed = random.randint(0, 2**32 - 1) |
|
else: |
|
seed = int(seed) |
|
|
|
width = min(width, MAX_IMAGE_SIZE // 2) |
|
height = min(height, MAX_IMAGE_SIZE // 2) |
|
height, width = adjust_dimensions(height, width) |
|
|
|
if negative_prompt=="1": |
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt="", |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images_per_prompt, |
|
generator=torch.Generator(pipe.device).manual_seed(seed) |
|
).images |
|
return image, seed |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
image = pipeline_real(prompt = prompt, |
|
negative_prompt = "", |
|
guidance_scale = guidance_scale, |
|
num_inference_steps = num_inference_steps, |
|
width = width, |
|
height = height, |
|
generator = generator |
|
).images |
|
|
|
return image, seed |
|
|
|
description = """ |
|
<p align="center">Effective Training of Diffusion Model for Photorealistic Text-to-Image Synthesis</p> |
|
<p><center> |
|
<a href="https://kolors.kuaishou.com/" target="_blank">[Official Website]</a> |
|
<a href="https://github.com/Kwai-Kolors/Kolors/blob/master/imgs/Kolors_paper.pdf" target="_blank">[Tech Report]</a> |
|
<a href="https://huggingface.co/Kwai-Kolors/Kolors" target="_blank">[Model Page]</a> |
|
<a href="https://github.com/Kwai-Kolors/Kolors" target="_blank">[Github]</a> |
|
</center></p> |
|
""" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_image, |
|
inputs=[ |
|
gr.Textbox(label="Prompt"), |
|
gr.Textbox(label="Negative Prompt") |
|
], |
|
additional_inputs=[ |
|
gr.Slider(512, 2048, 1024, step=64, label="Height"), |
|
gr.Slider(512, 2048, 1024, step=64, label="Width"), |
|
gr.Slider(20, 50, 20, step=1, label="Number of Inference Steps"), |
|
gr.Slider(1, 20, 5, step=0.5, label="Guidance Scale"), |
|
gr.Slider(1, 4, 1, step=1, label="Number of images per prompt"), |
|
gr.Checkbox(label="Use Random Seed", value=True), |
|
gr.Number(label="Seed", value=0, precision=0) |
|
], |
|
additional_inputs_accordion=gr.Accordion(label="Advanced settings", open=False), |
|
outputs=[ |
|
gr.Gallery(label="Result", elem_id="gallery", show_label=False), |
|
gr.Number(label="Seed Used") |
|
], |
|
title="Kolors", |
|
description=description, |
|
theme='bethecloud/storj_theme', |
|
) |
|
|
|
iface.launch(debug=True) |