import spaces import os import torch import random from huggingface_hub import snapshot_download from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline from kolors.models.modeling_chatglm import ChatGLMModel from kolors.models.tokenization_chatglm import ChatGLMTokenizer from diffusers import UNet2DConditionModel, AutoencoderKL from diffusers import EulerDiscreteScheduler import gradio as gr # Download the model files ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors") # Load the models text_encoder = ChatGLMModel.from_pretrained( os.path.join(ckpt_dir, 'text_encoder'), torch_dtype=torch.float16).half() tokenizer = ChatGLMTokenizer.from_pretrained(os.path.join(ckpt_dir, 'text_encoder')) vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), revision=None).half() scheduler = EulerDiscreteScheduler.from_pretrained(os.path.join(ckpt_dir, "scheduler")) unet = UNet2DConditionModel.from_pretrained(os.path.join(ckpt_dir, "unet"), revision=None).half() pipe = StableDiffusionXLPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, force_zeros_for_empty_prompt=False) pipe = pipe.to("cuda") import gradio as gr import numpy as np import random import torch from diffusers import AutoPipelineForText2Image import spaces device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 repo = "SG161222/RealVisXL_V4.0" pipeline_real = AutoPipelineForText2Image.from_pretrained(repo, torch_dtype=torch.float16).to('cuda') def adjust_to_nearest_multiple(value, divisor=8): """ Adjusts the input value to the nearest multiple of the divisor. Args: value (int): The value to adjust. divisor (int): The divisor to which the value should be divisible. Default is 8. Returns: int: The nearest multiple of the divisor. """ if value % divisor == 0: return value else: # Round to the nearest multiple of divisor return round(value / divisor) * divisor def adjust_dimensions(height, width): """ Adjusts the height and width to be divisible by 8. Args: height (int): The height to adjust. width (int): The width to adjust. Returns: tuple: Adjusted height and width. """ new_height = adjust_to_nearest_multiple(height) new_width = adjust_to_nearest_multiple(width) return new_height, new_width MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 4100 @spaces.GPU(duration=100) def generate_image(prompt, negative_prompt, height, width, num_inference_steps, guidance_scale, num_images_per_prompt, use_random_seed, seed, progress=gr.Progress(track_tqdm=True)): if use_random_seed: seed = random.randint(0, 2**32 - 1) else: seed = int(seed) # Ensure seed is an integer width = min(width, MAX_IMAGE_SIZE // 2) height = min(height, MAX_IMAGE_SIZE // 2) height, width = adjust_dimensions(height, width) if negative_prompt=="1": image = pipe( prompt=prompt, negative_prompt="", height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt, generator=torch.Generator(pipe.device).manual_seed(seed) ).images return image, seed generator = torch.Generator().manual_seed(seed) image = pipeline_real(prompt = prompt, negative_prompt = "", guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images return image, seed description = """
Effective Training of Diffusion Model for Photorealistic Text-to-Image Synthesis