|
import gradio as gr |
|
import spaces |
|
import torch |
|
from torch.cuda.amp import autocast |
|
import subprocess |
|
from huggingface_hub import InferenceClient |
|
import os |
|
import psutil |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch |
|
from accelerate import Accelerator |
|
|
|
|
|
subprocess.run( |
|
"pip install psutil", |
|
|
|
shell=True, |
|
) |
|
|
|
import bitsandbytes as bnb |
|
|
|
|
|
|
|
from datetime import datetime |
|
|
|
|
|
subprocess.run( |
|
"pip install flash-attn --no-build-isolation", |
|
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, |
|
shell=True, |
|
) |
|
|
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
|
|
|
|
token=os.getenv('token') |
|
print('token = ',token) |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
|
|
|
|
model_id = "meta-llama/Meta-Llama-3-8B-Instruct" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
|
|
model_id |
|
, token= token,) |
|
|
|
|
|
accelerator = Accelerator() |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, token= token, |
|
|
|
torch_dtype=torch.bfloat16, |
|
|
|
|
|
attn_implementation="flash_attention_2", |
|
low_cpu_mem_usage=True, |
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
model = accelerator.prepare(model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
from gradio_imageslider import ImageSlider |
|
from loadimg import load_img |
|
import spaces |
|
from transformers import AutoModelForImageSegmentation |
|
import torch |
|
from torchvision import transforms |
|
|
|
torch.set_float32_matmul_precision(["high", "highest"][0]) |
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet", trust_remote_code=True |
|
) |
|
birefnet.to("cuda") |
|
|
|
transform_image = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
|
|
|
|
|
|
|
|
import base64 |
|
from io import BytesIO |
|
from PIL import Image |
|
|
|
def convert_image_to_base64(image): |
|
""" |
|
Convert a PIL Image with alpha channel to a base64-encoded string. |
|
""" |
|
|
|
img_byte_array = BytesIO() |
|
image.save(img_byte_array, format="PNG") |
|
img_byte_array.seek(0) |
|
|
|
|
|
base64_str = base64.b64encode(img_byte_array.getvalue()).decode("utf-8") |
|
return base64_str |
|
|
|
|
|
|
|
import json |
|
|
|
def str_to_json(str_obj): |
|
json_obj = json.loads(str_obj) |
|
return json_obj |
|
|
|
|
|
@spaces.GPU(duration=140) |
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
|
|
|
|
messages = [] |
|
json_obj = str_to_json(message) |
|
print(json_obj) |
|
|
|
messages= json_obj |
|
|
|
try: |
|
image= json_obj['image'] |
|
print('selected bg remover') |
|
image = load_img(image, output_type="pil") |
|
image = image.convert("RGB") |
|
|
|
image_size = image.size |
|
|
|
input_images = transform_image(image).unsqueeze(0).to("cuda") |
|
|
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
image.putalpha(mask) |
|
print('remver success') |
|
|
|
try: |
|
yield str(convert_image_to_base64(image)) |
|
except Exception as e: |
|
print(e) |
|
yield image |
|
|
|
|
|
except Exception as e: |
|
print("using llama 8b intrcuxt ",e) |
|
|
|
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device) |
|
input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") |
|
print(f"Converted input_ids dtype: {input_ids.dtype}") |
|
input_str= str(input_ids2) |
|
print('input str = ', input_str) |
|
|
|
with torch.no_grad(): |
|
gen_tokens = model.generate( |
|
input_ids, |
|
max_new_tokens=max_tokens, |
|
|
|
temperature=temperature, |
|
) |
|
|
|
gen_text = tokenizer.decode(gen_tokens[0]) |
|
print(gen_text) |
|
gen_text= gen_text.replace(input_str,'') |
|
gen_text= gen_text.replace('<|eot_id|>','') |
|
|
|
yield gen_text |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |