zerogpu-2 / app.py
rphrp1985's picture
Update app.py
a164036 verified
raw
history blame
7.33 kB
import gradio as gr
import spaces
import torch
from torch.cuda.amp import autocast
import subprocess
from huggingface_hub import InferenceClient
import os
import psutil
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
from accelerate import Accelerator
subprocess.run(
"pip install psutil",
shell=True,
)
import bitsandbytes as bnb # Import bitsandbytes for 8-bit quantization
from datetime import datetime
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# pip install 'git+https://github.com/huggingface/transformers.git'
token=os.getenv('token')
print('token = ',token)
from transformers import AutoModelForCausalLM, AutoTokenizer
# model_id = "mistralai/Mistral-7B-v0.3"
# model_id = "openchat/openchat-3.6-8b-20240522"
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(
# model_id
model_id
, token= token,)
accelerator = Accelerator()
model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
# torch_dtype= torch.uint8,
torch_dtype=torch.bfloat16,
# load_in_4bit=True,
# # # torch_dtype=torch.fl,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
# device_map='cuda',
# device_map=accelerator.device_map,
)
#
model = accelerator.prepare(model)
################################################### BG REMOVER ###################################################
import gradio as gr
from gradio_imageslider import ImageSlider
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
import base64
from io import BytesIO
from PIL import Image
def convert_image_to_base64(image):
"""
Convert a PIL Image with alpha channel to a base64-encoded string.
"""
# Save the image into a BytesIO buffer
img_byte_array = BytesIO()
image.save(img_byte_array, format="PNG") # Use PNG for transparency
img_byte_array.seek(0) # Reset the pointer to the beginning
# Encode the image bytes to base64
base64_str = base64.b64encode(img_byte_array.getvalue()).decode("utf-8")
return base64_str
import json
def str_to_json(str_obj):
json_obj = json.loads(str_obj)
return json_obj
@spaces.GPU(duration=140)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# yield 'retuend'
# model.to(accelerator.device)
messages = []
json_obj = str_to_json(message)
print(json_obj)
messages= json_obj
try:
image= json_obj['image']
print('selected bg remover')
image = load_img(image, output_type="pil")
image = image.convert("RGB")
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
print('remver success')
try:
yield str(convert_image_to_base64(image))
except Exception as e:
print(e)
yield image
except Exception as e:
print("using llama 8b intrcuxt ",e)
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
print(f"Converted input_ids dtype: {input_ids.dtype}")
input_str= str(input_ids2)
print('input str = ', input_str)
with torch.no_grad():
gen_tokens = model.generate(
input_ids,
max_new_tokens=max_tokens,
# do_sample=True,
temperature=temperature,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
gen_text= gen_text.replace(input_str,'')
gen_text= gen_text.replace('<|eot_id|>','')
yield gen_text
# messages = [
# # {"role": "user", "content": "What is your favourite condiment?"},
# # {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
# # {"role": "user", "content": "Do you have mayonnaise recipes?"}
# ]
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
# outputs = model.generate(inputs, max_new_tokens=2000)
# gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
# print(gen_text)
# yield gen_text
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()