rpratap2102's picture
Update app.py
885a6d8
raw
history blame
786 Bytes
from transformers import BertTokenizer, BertForSequenceClassification
from transformers import pipeline
import gradio as gr
finbert = BertForSequenceClassification.from_pretrained('rpratap2102/The_Misfits', num_labels=3)
tokenizer = BertTokenizer.from_pretrained('rpratap2102/The_Misfits')
nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer)
c_labels = {
'Negative': 'This does not look good for the Market',
'Positive': 'This seems to be good news for the market',
'Neutral': "This is normal in the market"
}
def predict_sentiment(text):
result = nlp([text])[0]
sentiment_label = result['label']
return c_labels[sentiment_label]
iface = gr.Interface(
fn=predict_sentiment,
inputs="text",
outputs="text",
)
iface.launch()