Spaces:
Sleeping
Sleeping
from transformers import BertTokenizer, BertForSequenceClassification | |
from transformers import pipeline | |
import gradio as gr | |
finbert = BertForSequenceClassification.from_pretrained('rpratap2102/The_Misfits', num_labels=3) | |
tokenizer = BertTokenizer.from_pretrained('rpratap2102/The_Misfits') | |
nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer) | |
c_labels = { | |
'Negative': 'This does not look good for the Market', | |
'Positive': 'This seems to be good news for the market', | |
'Neutral': "This is normal in the market" | |
} | |
def predict_sentiment(text): | |
result = nlp([text])[0] | |
sentiment_label = result['label'] | |
return c_labels[sentiment_label] | |
iface = gr.Interface( | |
fn=predict_sentiment, | |
inputs="text", | |
outputs="text", | |
) | |
iface.launch() |