rpratap2102 commited on
Commit
e88230c
Β·
1 Parent(s): 10ceb34

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -7
app.py CHANGED
@@ -2,15 +2,24 @@ from transformers import BertTokenizer, BertForSequenceClassification
2
  from transformers import pipeline
3
  import gradio as gr
4
 
 
 
 
 
 
 
 
 
 
5
  finbert = BertForSequenceClassification.from_pretrained('rpratap2102/The_Misfits', num_labels=3)
6
  tokenizer = BertTokenizer.from_pretrained('rpratap2102/The_Misfits')
7
 
8
  nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer)
9
 
10
  c_labels = {
11
- 'Negative': {'text': 'This does not look good for the Market', 'emoji': '😞'},
12
- 'Positive': {'text': 'This seems to be good news for the market', 'emoji': 'πŸ˜ƒ'},
13
- 'Neutral': {'text': "This is normal in the market", 'emoji': '😐'}
14
  }
15
 
16
  def predict_sentiment(text):
@@ -20,10 +29,8 @@ def predict_sentiment(text):
20
 
21
  label_text = c_labels[sentiment_label]['text']
22
  emoji = c_labels[sentiment_label]['emoji']
23
-
24
- output_text = f"{label_text} ({sentiment_label}) with a confidence score of {confidence_score:.2f}"
25
-
26
- return f"{emoji} {output_text}"
27
 
28
  iface = gr.Interface(
29
  fn=predict_sentiment,
 
2
  from transformers import pipeline
3
  import gradio as gr
4
 
5
+ finbert = BertForSequenceClassification.from_pretrained('rpratap2102/The_Misfits', num_labels=3)
6
+ tokenizer = BertTokenizer.from_pretrained('rpratap2102/The_Misfits')
7
+
8
+ nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer)
9
+
10
+ from transformers import BertTokenizer, BertForSequenceClassification
11
+ from transformers import pipeline
12
+
13
+
14
  finbert = BertForSequenceClassification.from_pretrained('rpratap2102/The_Misfits', num_labels=3)
15
  tokenizer = BertTokenizer.from_pretrained('rpratap2102/The_Misfits')
16
 
17
  nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer)
18
 
19
  c_labels = {
20
+ 'Negative': {'text': 'This does not look good for the Market.', 'emoji': '😞'},
21
+ 'Positive': {'text': 'This seems to be good news for the market.', 'emoji': 'πŸ˜ƒ'},
22
+ 'Neutral': {'text': "This is normal in the market.", 'emoji': '😐'}
23
  }
24
 
25
  def predict_sentiment(text):
 
29
 
30
  label_text = c_labels[sentiment_label]['text']
31
  emoji = c_labels[sentiment_label]['emoji']
32
+
33
+ return f"{label_text} {emoji} (Model Predicted it as {sentiment_label} with a confidence score of {confidence_score:.2f})"
 
 
34
 
35
  iface = gr.Interface(
36
  fn=predict_sentiment,