from transformers import BertTokenizer, BertForSequenceClassification from transformers import pipeline import gradio as gr finbert = BertForSequenceClassification.from_pretrained('rpratap2102/The_Misfits', num_labels=3) tokenizer = BertTokenizer.from_pretrained('rpratap2102/The_Misfits') nlp = pipeline("sentiment-analysis", model=finbert, tokenizer=tokenizer) c_labels = { 'Negative': 'This does not look good for the Market', 'Positive': 'This seems to be good news for the market', 'Neutral': "This is normal in the market" } def predict_sentiment(text): result = nlp([text])[0] sentiment_label = result['label'] return c_labels[sentiment_label] iface = gr.Interface( fn=predict_sentiment, inputs="text", outputs="text", ) iface.launch()