pos-tagger / app.py
rrayhka's picture
Update app.py
cbaadef verified
from flask import Flask, request, jsonify, render_template
from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline
from flask_cors import CORS
import logging
logging.basicConfig(level=logging.DEBUG)
# Log untuk mendeteksi worker Gunicorn
if __name__ != '__main__':
logging.info("Gunicorn worker started")
app = Flask(__name__)
CORS(app)
model_path = "./model"
logging.info("Loading model and tokenizer...")
model = AutoModelForTokenClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
nlp = pipeline("token-classification", model=model, tokenizer=tokenizer)
logging.info("Model and tokenizer loaded successfully.")
@app.route('/')
def home():
return render_template('index.html')
@app.route('/pos_tag', methods=['POST'])
def pos_tag():
data = request.json
text = data.get('text') if data else None
if not text:
return jsonify({"error": "Please provide input text"}), 400
# Handling UTF-8 encoding issues
text = text.encode('utf-8').decode('utf-8')
try:
results = nlp(text)
tagged_tokens = [
{"word": res["word"].replace('Ġ', ''),
"tag": res["entity"].replace('B-', '').replace('I-', '')}
for res in results
]
return jsonify({"tagged_tokens": tagged_tokens})
except Exception as e:
logging.error(f"Error processing text: {str(e)}")
return jsonify({"error": "Error processing text"}), 500
if __name__ == '__main__':
app.run(port=5007, debug=True)