import spaces import gradio as gr import platform import os; import socket; import torch device = "cuda"; if not torch.cuda.is_available() and device == "cuda": raise RuntimeError("CUDA device unavailable, please use Dockerfile.cpu instead.") print("DEVICE: ", device); RandomTensor = torch.randn(1, 2) # Example audio tensor RandomTensor.to(device) def sysinfo(device): tensorExample = RandomTensor.to(device) tocpu = tensorExample.cpu().squeeze().half().tolist() return f""" hostname: {platform.node()} {socket.gethostname()} device: {device} tensor: {tensorExample} toCpu: {tocpu} """; @spaces.GPU def gpu(): return sysinfo("cuda:0"); def nogpu(): return sysinfo("cpu"); with gr.Blocks() as demo: outgpu = gr.Textbox(lines=5); outnpu = gr.Textbox(lines=5); btngpu = gr.Button(value="gpu"); btngpun = gr.Button(value="ngpu"); btngpu.click(gpu, None, [outgpu]); btngpun.click(nogpu, None, [outnpu]); if __name__ == "__main__": demo.launch( share=False, debug=False, server_port=7860, server_name="0.0.0.0" )