product-defects / app.py
rrighart's picture
Upload app.py
61ab183
raw
history blame
716 Bytes
import gradio as gr
import torch
###############
def yolov7_inference(
image: gr.inputs.Image = None,
):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
path = 'y7-prdef.pt'
model = torch.hub.load("WongKinYiu/yolov7","custom",f"{path}")
results = model([image], size=640)
return results.render()[0]
inputs = [
gr.inputs.Image(type="pil", label="Input Image"),
]
demo_app = gr.Interface(
fn=yolov7_inference,
inputs=inputs,
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
title="Yolov7 | Jar lid product defects",
examples=['t1.JPG'],
cache_examples=True,
)
demo_app.launch(debug=True, enable_queue=True)