import gradio as gr import torch ############### def yolov7_inference( image: gr.inputs.Image = None, ): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") path = 'y7-prdef.pt' model = torch.hub.load("WongKinYiu/yolov7","custom",f"{path}") results = model([image], size=640) return results.render()[0] inputs = [ gr.inputs.Image(type="pil", label="Input Image"), ] demo_app = gr.Interface( fn=yolov7_inference, inputs=inputs, outputs=gr.outputs.Image(type="filepath", label="Output Image"), title="Yolov7 | Jar lid product defects", examples=['t1.JPG'], cache_examples=True, ) demo_app.launch(debug=True, enable_queue=True)