import gradio as gr import os import torch print(f"Version Gradio: {gr.__version__}") def update_value(val): return f'Value is set to {val}' def yolov7_inference( image: gr.Image = None, conf_threshold: gr.Slider = 0.20, ): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") path = 'y7-prdef.pt' model = torch.hub.load("WongKinYiu/yolov7","custom",f"{path}") model.conf = conf_threshold results = model([image], size=640) return results.render()[0] inputs = [ gr.Image(label="input image"), gr.Slider(minimum=0, maximum=1, step=0.1, label='Value'), ] outputs = [ gr.Image(label="output image"), ] gr.Interface( fn = yolov7_inference, inputs = inputs, outputs = outputs, title = "- The detection of jar lid defects using Yolov7 -", description = "contact: rrighart@googlemail.com", examples = [["example1.JPG"], ["example2.JPG"], ["example3.JPG"]], ).launch(debug=True)