import gradio as gr from ultralytics import YOLO def yolov10_inference(image, model_id, image_size, conf_threshold): model = YOLO(f'{model_id}.engine') results = model.predict(source=image, imgsz=image_size, conf=conf_threshold) annotated_image = results[0].plot() return annotated_image[:, :, ::-1], None def yolov10_inference_for_examples(image, model_path, image_size, conf_threshold): annotated_image, _ = yolov10_inference(image, model_path, image_size, conf_threshold) return annotated_image def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): image = gr.Image(type="pil", label="Image", visible=True) model_id = gr.Dropdown( label="Model", choices=[ "yolov10s", "yolov10m", "yolov10m_ssvd_0.4", "yolov10m_wsvd_0.4", ], value="yolov10s", ) image_size = gr.Slider( label="Image Size", minimum=320, maximum=1280, step=32, value=640, ) conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.0, maximum=1.0, step=0.05, value=0.25, ) yolov10_infer = gr.Button(value="Detect Smoke") with gr.Column(): output_image = gr.Image(type="numpy", label="Annotated Image", visible=True) yolov10_infer.click( fn=yolov10_inference, inputs=[image, model_id, image_size, conf_threshold], outputs=[output_image], ) gr.Examples( examples=[ [ "examples/smoke1.jpg", "yolov10s", 1280, 0.25, ], [ "examples/smoke2.jpg", "yolov10s", 1280, 0.25, ], [ "examples/smoke3.jpg", "yolov10s", 1280, 0.25, ], [ "examples/smoke4.jpg", "yolov10s", 1280, 0.25, ], [ "examples/smoke5.jpg", "yolov10s", 1280, 0.25, ], ], fn=yolov10_inference_for_examples, inputs=[ image, model_id, image_size, conf_threshold, ], outputs=[output_image], cache_examples='lazy', ) gradio_app = gr.Blocks() with gradio_app: gr.HTML( """