Duplicate from lekkalar/chatgpt-for-pdfs-without-chat-history
Browse filesCo-authored-by: radhika lekkala <lekkalar@users.noreply.huggingface.co>
- .gitattributes +34 -0
- README.md +13 -0
- app.py +192 -0
- requirements.txt +6 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: ChatGPT For PDFs
|
3 |
+
emoji: 👁
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.33.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: lekkalar/chatgpt-for-pdfs-without-chat-history
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
|
7 |
+
from langchain.document_loaders import OnlinePDFLoader #for laoding the pdf
|
8 |
+
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings
|
9 |
+
from langchain.vectorstores import Chroma # for the vectorization part
|
10 |
+
from langchain.chains import RetrievalQA # for conversing with chatGPT
|
11 |
+
from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT)
|
12 |
+
from langchain import PromptTemplate
|
13 |
+
|
14 |
+
def load_pdf_and_generate_embeddings(pdf_doc, open_ai_key, relevant_pages):
|
15 |
+
if openai_key is not None:
|
16 |
+
os.environ['OPENAI_API_KEY'] = open_ai_key
|
17 |
+
#Load the pdf file
|
18 |
+
loader = OnlinePDFLoader(pdf_doc.name)
|
19 |
+
pages = loader.load_and_split()
|
20 |
+
|
21 |
+
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
|
22 |
+
embeddings = OpenAIEmbeddings()
|
23 |
+
|
24 |
+
pages_to_be_loaded =[]
|
25 |
+
|
26 |
+
if relevant_pages:
|
27 |
+
page_numbers = relevant_pages.split(",")
|
28 |
+
if len(page_numbers) != 0:
|
29 |
+
for page_number in page_numbers:
|
30 |
+
if page_number.isdigit():
|
31 |
+
pageIndex = int(page_number)-1
|
32 |
+
if pageIndex >=0 and pageIndex <len(pages):
|
33 |
+
pages_to_be_loaded.append(pages[pageIndex])
|
34 |
+
#In the scenario where none of the page numbers supplied exist in the PDF, we will revert to using the entire PDF.
|
35 |
+
if len(pages_to_be_loaded) ==0:
|
36 |
+
pages_to_be_loaded = pages.copy()
|
37 |
+
|
38 |
+
|
39 |
+
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case) and the embeddings instance
|
40 |
+
vectordb = Chroma.from_documents(pages_to_be_loaded, embedding=embeddings)
|
41 |
+
|
42 |
+
#Finally, we create the bot using the RetrievalQA class
|
43 |
+
global pdf_qa
|
44 |
+
|
45 |
+
prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return N/A. If you encounter a date, return it in mm/dd/yyyy format.
|
46 |
+
|
47 |
+
{context}
|
48 |
+
|
49 |
+
Question: {question}
|
50 |
+
Return just the answer :"""
|
51 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
52 |
+
chain_type_kwargs = {"prompt": PROMPT}
|
53 |
+
pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(search_kwargs={"k": 5}), chain_type_kwargs=chain_type_kwargs, return_source_documents=False)
|
54 |
+
|
55 |
+
return "Ready"
|
56 |
+
else:
|
57 |
+
return "Please provide an OpenAI gpt-4 API key"
|
58 |
+
|
59 |
+
|
60 |
+
def answer_predefined_questions(document_type):
|
61 |
+
|
62 |
+
if document_type == "Deed of Trust":
|
63 |
+
#Create a list of questions around the relevant fields of a Deed of Trust(DOT) document
|
64 |
+
query1 = "what is the Loan Number?"
|
65 |
+
field1 = "Loan Number"
|
66 |
+
query2 = "Who is the Borrower?"
|
67 |
+
field2 = "Borrower"
|
68 |
+
query3 = "what is the Case Number?"
|
69 |
+
field3 = "Case Number"
|
70 |
+
query4 = "what is the Mortgage Identification number?"
|
71 |
+
field4 = "MIN Number"
|
72 |
+
query5 = "DOT signed date?"
|
73 |
+
field5 = "Signed Date"
|
74 |
+
query6 = "Who is the Lender?"
|
75 |
+
field6 = "Lender"
|
76 |
+
query7 = "what is the VA/FHA Number?"
|
77 |
+
field7 = "VA/FHA Number"
|
78 |
+
query8 = "Who is the Co-Borrower?"
|
79 |
+
field8 = "Co-Borrower"
|
80 |
+
query9 = "What is the property type - single family, multi family?"
|
81 |
+
field9 = "Property Type"
|
82 |
+
query10 = "what is the Property Address?"
|
83 |
+
field10 = "Property Address"
|
84 |
+
query11 = "In what County is the property located?"
|
85 |
+
field11 = "Property County"
|
86 |
+
query12 = "what is the Electronically recorded date"
|
87 |
+
field12 = "Electronic Recording Date"
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
elif document_type == "Transmittal Summary":
|
92 |
+
#Create a list of questions around the relevant fields of a TRANSMITTAL SUMMARY document
|
93 |
+
query1 = "Who is the Borrower?"
|
94 |
+
field1 = "Borrower"
|
95 |
+
query2 = "what is the Property Address?"
|
96 |
+
field2 = "Property Address"
|
97 |
+
query3 = "what is the Loan Term?"
|
98 |
+
field3 = "Loan Term"
|
99 |
+
query4 = "What is the Base Income?"
|
100 |
+
field4 = "Base Income"
|
101 |
+
query5 = "what is the Borrower's SSN?"
|
102 |
+
field5 = "Borrower's SSN"
|
103 |
+
query6 = "Who is the Co-Borrower?"
|
104 |
+
field6 = "Co-Borrower"
|
105 |
+
query7 = "What is the Original Loan Amount?"
|
106 |
+
field7 = "Original Loan Amount"
|
107 |
+
query8 = "What is the Initial P&I payment?"
|
108 |
+
field8 = "Initial P&I payment"
|
109 |
+
query9 = "What is the Co-Borrower's SSN?"
|
110 |
+
field9 = "Co-Borrower’s SSN"
|
111 |
+
query10 = "Number of units?"
|
112 |
+
field10 = "Units#"
|
113 |
+
query11 = "Who is the Seller?"
|
114 |
+
field11 = "Seller"
|
115 |
+
query12 = "Document signed date?"
|
116 |
+
field12 = "Signed Date"
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
else:
|
121 |
+
return "Please choose your Document Type"
|
122 |
+
|
123 |
+
queryList = [query1, query2, query3, query4, query5, query6, query7, query8, query9, query10, query11,query12]
|
124 |
+
fieldList = [field1, field2, field3, field4, field5, field6, field7, field8, field9, field10, field11,field12]
|
125 |
+
responseList =[]
|
126 |
+
|
127 |
+
i = 0
|
128 |
+
while i < len(queryList):
|
129 |
+
question = queryList[i]
|
130 |
+
responseList.append(pdf_qa.run(question))
|
131 |
+
i = i+1
|
132 |
+
|
133 |
+
return pd.DataFrame({"Field": [fieldList[0],fieldList[1],fieldList[2],fieldList[3],fieldList[4],fieldList[5],fieldList[6],fieldList[7],fieldList[8],fieldList[9],fieldList[10],fieldList[11]],
|
134 |
+
"Question to gpt-4": [queryList[0],queryList[1],queryList[2],queryList[3],queryList[4],queryList[5],queryList[6],queryList[7],queryList[8],queryList[9],queryList[10],queryList[11]],
|
135 |
+
"Response from gpt-4": [responseList[0],responseList[1],responseList[2],responseList[3],responseList[4],responseList[5],responseList[6],responseList[7],responseList[8],responseList[9],responseList[10],responseList[11]]})
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
def answer_query(query):
|
140 |
+
question = query
|
141 |
+
return pdf_qa.run(question)
|
142 |
+
|
143 |
+
|
144 |
+
css="""
|
145 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
146 |
+
"""
|
147 |
+
|
148 |
+
title = """
|
149 |
+
<div style="text-align: center;max-width: 700px;">
|
150 |
+
<h1>Chatbot for PDFs - GPT-4</h1>
|
151 |
+
<p style="text-align: center;">Upload a .PDF, click the "Upload PDF and generate embeddings" button, <br />
|
152 |
+
Wait for the Status to show Ready. You can chose to get answers to the pre-defined question set OR ask your own question <br />
|
153 |
+
The app is built on GPT-4 and leverages PromptTemplate</p>
|
154 |
+
</div>
|
155 |
+
"""
|
156 |
+
|
157 |
+
with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo:
|
158 |
+
with gr.Column(elem_id="col-container"):
|
159 |
+
gr.HTML(title)
|
160 |
+
|
161 |
+
with gr.Column():
|
162 |
+
openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password")
|
163 |
+
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
|
164 |
+
relevant_pages = gr.Textbox(label="*Optional - List comma separated page numbers to load or leave this field blank to use the entire PDF")
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
168 |
+
load_pdf = gr.Button("Upload PDF and generate embeddings").style(full_width=False)
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
document_type = gr.Radio(['Deed of Trust', 'Transmittal Summary'], label="Select the Document Type")
|
172 |
+
answers = gr.Dataframe(label="Answers to Predefined Question set")
|
173 |
+
answers_for_predefined_question_set = gr.Button("Get gpt-4 answers to pre-defined question set").style(full_width=False)
|
174 |
+
|
175 |
+
with gr.Row():
|
176 |
+
input = gr.Textbox(label="Type in your question")
|
177 |
+
output = gr.Textbox(label="Answer")
|
178 |
+
submit_query = gr.Button("Submit your own question to gpt-4").style(full_width=False)
|
179 |
+
|
180 |
+
|
181 |
+
load_pdf.click(load_pdf_and_generate_embeddings, inputs=[pdf_doc, openai_key, relevant_pages], outputs=status)
|
182 |
+
|
183 |
+
answers_for_predefined_question_set.click(answer_predefined_questions, document_type, answers)
|
184 |
+
|
185 |
+
submit_query.click(answer_query,input,output)
|
186 |
+
|
187 |
+
|
188 |
+
demo.launch()
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
tiktoken
|
3 |
+
chromadb
|
4 |
+
langchain
|
5 |
+
unstructured
|
6 |
+
unstructured[local-inference]
|