import os import argparse import gradio as gr from datetime import datetime import numpy as np import torch from diffusers.image_processor import VaeImageProcessor from huggingface_hub import snapshot_download from PIL import Image from model.cloth_masker import AutoMasker, vis_mask from model.flux.pipeline_flux_tryon import FluxTryOnPipeline from utils import resize_and_crop, resize_and_padding def parse_args(): parser = argparse.ArgumentParser(description="FLUX Try-On Demo") parser.add_argument( "--base_model_path", type=str, default="black-forest-labs/FLUX.1-Fill-dev", # default="Models/FLUX.1-Fill-dev", help="The path to the base model to use for evaluation." ) parser.add_argument( "--resume_path", type=str, default="zhengchong/CatVTON", help="The Path to the checkpoint of trained tryon model." ) parser.add_argument( "--output_dir", type=str, default="resource/demo/output", help="The output directory where the model predictions will be written." ) parser.add_argument( "--mixed_precision", type=str, default="bf16", choices=["no", "fp16", "bf16"], help="Whether to use mixed precision." ) parser.add_argument( "--allow_tf32", action="store_true", default=True, help="Whether or not to allow TF32 on Ampere GPUs." ) parser.add_argument( "--width", type=int, default=768, help="The width of the input image." ) parser.add_argument( "--height", type=int, default=1024, help="The height of the input image." ) return parser.parse_args() def image_grid(imgs, rows, cols): assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def submit_function_flux( person_image, cloth_image, cloth_type, num_inference_steps, guidance_scale, seed, show_type ): # Process image editor input person_image, mask = person_image["background"], person_image["layers"][0] mask = Image.open(mask).convert("L") if len(np.unique(np.array(mask))) == 1: mask = None else: mask = np.array(mask) mask[mask > 0] = 255 mask = Image.fromarray(mask) # Set random seed generator = None if seed != -1: generator = torch.Generator(device='cuda').manual_seed(seed) # Process input images person_image = Image.open(person_image).convert("RGB") cloth_image = Image.open(cloth_image).convert("RGB") # Adjust image sizes person_image = resize_and_crop(person_image, (args.width, args.height)) cloth_image = resize_and_padding(cloth_image, (args.width, args.height)) # Process mask if mask is not None: mask = resize_and_crop(mask, (args.width, args.height)) else: mask = automasker( person_image, cloth_type )['mask'] mask = mask_processor.blur(mask, blur_factor=9) # Inference result_image = pipeline_flux( image=person_image, condition_image=cloth_image, mask_image=mask, height=args.height, width=args.width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator ).images[0] # Post-processing masked_person = vis_mask(person_image, mask) # Return result based on show type if show_type == "result only": return result_image else: width, height = person_image.size if show_type == "input & result": condition_width = width // 2 conditions = image_grid([person_image, cloth_image], 2, 1) else: condition_width = width // 3 conditions = image_grid([person_image, masked_person, cloth_image], 3, 1) conditions = conditions.resize((condition_width, height), Image.NEAREST) new_result_image = Image.new("RGB", (width + condition_width + 5, height)) new_result_image.paste(conditions, (0, 0)) new_result_image.paste(result_image, (condition_width + 5, 0)) return new_result_image def person_example_fn(image_path): return image_path def app_gradio(): with gr.Blocks(title="CatVTON with FLUX.1-Fill-dev") as demo: gr.Markdown("# CatVTON with FLUX.1-Fill-dev") with gr.Row(): with gr.Column(scale=1, min_width=350): with gr.Row(): image_path_flux = gr.Image( type="filepath", interactive=True, visible=False, ) person_image_flux = gr.ImageEditor( interactive=True, label="Person Image", type="filepath" ) with gr.Row(): with gr.Column(scale=1, min_width=230): cloth_image_flux = gr.Image( interactive=True, label="Condition Image", type="filepath" ) with gr.Column(scale=1, min_width=120): gr.Markdown( 'Two ways to provide Mask:
1. Upload the person image and use the `🖌️` above to draw the Mask (higher priority)
2. Select the `Try-On Cloth Type` to generate automatically
' ) cloth_type = gr.Radio( label="Try-On Cloth Type", choices=["upper", "lower", "overall"], value="upper", ) submit_flux = gr.Button("Submit") gr.Markdown( '
!!! Click only Once, Wait for Delay !!!
' ) with gr.Accordion("Advanced Options", open=False): num_inference_steps_flux = gr.Slider( label="Inference Step", minimum=10, maximum=100, step=5, value=50 ) # Guidence Scale guidance_scale_flux = gr.Slider( label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30 ) # Random Seed seed_flux = gr.Slider( label="Seed", minimum=-1, maximum=10000, step=1, value=42 ) show_type = gr.Radio( label="Show Type", choices=["result only", "input & result", "input & mask & result"], value="input & mask & result", ) with gr.Column(scale=2, min_width=500): result_image_flux = gr.Image(interactive=False, label="Result") with gr.Row(): # Photo Examples root_path = "resource/demo/example" with gr.Column(): gr.Examples( examples=[ os.path.join(root_path, "person", "men", _) for _ in os.listdir(os.path.join(root_path, "person", "men")) ], examples_per_page=4, inputs=image_path_flux, label="Person Examples ①", ) gr.Examples( examples=[ os.path.join(root_path, "person", "women", _) for _ in os.listdir(os.path.join(root_path, "person", "women")) ], examples_per_page=4, inputs=image_path_flux, label="Person Examples ②", ) gr.Markdown( '*Person examples come from the demos of OOTDiffusion and OutfitAnyone. ' ) with gr.Column(): gr.Examples( examples=[ os.path.join(root_path, "condition", "upper", _) for _ in os.listdir(os.path.join(root_path, "condition", "upper")) ], examples_per_page=4, inputs=cloth_image_flux, label="Condition Upper Examples", ) gr.Examples( examples=[ os.path.join(root_path, "condition", "overall", _) for _ in os.listdir(os.path.join(root_path, "condition", "overall")) ], examples_per_page=4, inputs=cloth_image_flux, label="Condition Overall Examples", ) condition_person_exm = gr.Examples( examples=[ os.path.join(root_path, "condition", "person", _) for _ in os.listdir(os.path.join(root_path, "condition", "person")) ], examples_per_page=4, inputs=cloth_image_flux, label="Condition Reference Person Examples", ) gr.Markdown( '*Condition examples come from the Internet. ' ) image_path_flux.change( person_example_fn, inputs=image_path_flux, outputs=person_image_flux ) submit_flux.click( submit_function_flux, [person_image_flux, cloth_image_flux, cloth_type, num_inference_steps_flux, guidance_scale_flux, seed_flux, show_type], result_image_flux, ) demo.queue().launch(share=True, show_error=True) # 解析参数 args = parse_args() # 加载模型 repo_path = snapshot_download(repo_id=args.resume_path) pipeline_flux = FluxTryOnPipeline.from_pretrained(args.base_model_path) pipeline_flux.load_lora_weights( os.path.join(repo_path, "flux-lora"), weight_name='pytorch_lora_weights.safetensors' ) pipeline_flux.to("cuda", torch.bfloat16) # 初始化 AutoMasker mask_processor = VaeImageProcessor( vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True ) automasker = AutoMasker( densepose_ckpt=os.path.join(repo_path, "DensePose"), schp_ckpt=os.path.join(repo_path, "SCHP"), device='cuda' ) if __name__ == "__main__": app_gradio()