Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,55 @@
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, LlamaTokenizer
|
4 |
from peft import PeftModel
|
5 |
-
import bitsandbytes as bnb
|
6 |
import gc
|
7 |
|
8 |
@st.cache_resource
|
9 |
def load_model():
|
10 |
model_name = "peterxyz/detect-llama-34b"
|
11 |
-
# Use LlamaTokenizer instead of AutoTokenizer
|
12 |
tokenizer = LlamaTokenizer.from_pretrained(model_name)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
bnb_4bit_use_double_quant=True,
|
18 |
-
bnb_4bit_compute_dtype=torch.bfloat16
|
19 |
-
)
|
20 |
|
21 |
-
# Clear
|
22 |
-
|
|
|
23 |
gc.collect()
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
return model, tokenizer
|
34 |
|
35 |
-
def analyze_contract(contract_code, model, tokenizer):
|
36 |
prompt = f"{contract_code}\n\nidentify vulnerability of this code given above"
|
37 |
|
38 |
# Add padding token if needed
|
@@ -44,16 +61,16 @@ def analyze_contract(contract_code, model, tokenizer):
|
|
44 |
return_tensors="pt",
|
45 |
padding=True,
|
46 |
truncation=True,
|
47 |
-
max_length=2048
|
48 |
-
).to(
|
49 |
|
50 |
outputs = model.generate(
|
51 |
**inputs,
|
52 |
max_length=1024,
|
53 |
temperature=0.7,
|
54 |
num_return_sequences=1,
|
55 |
-
pad_token_id=tokenizer.pad_token_id,
|
56 |
-
eos_token_id=tokenizer.eos_token_id
|
57 |
)
|
58 |
|
59 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
@@ -80,7 +97,7 @@ if 'model_loaded' not in st.session_state:
|
|
80 |
if not st.session_state.model_loaded:
|
81 |
try:
|
82 |
with st.spinner('Loading model... This might take a few minutes...'):
|
83 |
-
st.session_state.model, st.session_state.tokenizer = load_model()
|
84 |
st.session_state.model_loaded = True
|
85 |
st.success('Model loaded successfully!')
|
86 |
except Exception as e:
|
@@ -143,7 +160,8 @@ if analyze_button and contract_code:
|
|
143 |
analysis = analyze_contract(
|
144 |
contract_code,
|
145 |
st.session_state.model,
|
146 |
-
st.session_state.tokenizer
|
|
|
147 |
)
|
148 |
|
149 |
st.subheader("Analysis Results")
|
|
|
1 |
import streamlit as st
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, LlamaTokenizer
|
4 |
from peft import PeftModel
|
|
|
5 |
import gc
|
6 |
|
7 |
@st.cache_resource
|
8 |
def load_model():
|
9 |
model_name = "peterxyz/detect-llama-34b"
|
|
|
10 |
tokenizer = LlamaTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
+
# Check if CUDA is available
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
st.info(f"Using device: {device}")
|
|
|
|
|
|
|
15 |
|
16 |
+
# Clear memory
|
17 |
+
if device == "cuda":
|
18 |
+
torch.cuda.empty_cache()
|
19 |
gc.collect()
|
20 |
|
21 |
+
# Load model with appropriate settings based on device
|
22 |
+
if device == "cuda":
|
23 |
+
from transformers import BitsAndBytesConfig
|
24 |
+
import bitsandbytes as bnb
|
25 |
+
|
26 |
+
nf4_config = BitsAndBytesConfig(
|
27 |
+
load_in_4bit=True,
|
28 |
+
bnb_4bit_quant_type="nf4",
|
29 |
+
bnb_4bit_use_double_quant=True,
|
30 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
31 |
+
)
|
32 |
+
|
33 |
+
model_nf4 = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_name,
|
35 |
+
quantization_config=nf4_config,
|
36 |
+
device_map="auto",
|
37 |
+
trust_remote_code=True
|
38 |
+
)
|
39 |
+
model = PeftModel.from_pretrained(model_nf4, model_name)
|
40 |
+
else:
|
41 |
+
# For CPU, load with reduced precision but without 4-bit quantization
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
model_name,
|
44 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
45 |
+
device_map={"": device},
|
46 |
+
low_cpu_mem_usage=True,
|
47 |
+
trust_remote_code=True
|
48 |
+
)
|
49 |
|
50 |
+
return model, tokenizer, device
|
51 |
|
52 |
+
def analyze_contract(contract_code, model, tokenizer, device):
|
53 |
prompt = f"{contract_code}\n\nidentify vulnerability of this code given above"
|
54 |
|
55 |
# Add padding token if needed
|
|
|
61 |
return_tensors="pt",
|
62 |
padding=True,
|
63 |
truncation=True,
|
64 |
+
max_length=2048
|
65 |
+
).to(device)
|
66 |
|
67 |
outputs = model.generate(
|
68 |
**inputs,
|
69 |
max_length=1024,
|
70 |
temperature=0.7,
|
71 |
num_return_sequences=1,
|
72 |
+
pad_token_id=tokenizer.pad_token_id,
|
73 |
+
eos_token_id=tokenizer.eos_token_id
|
74 |
)
|
75 |
|
76 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
97 |
if not st.session_state.model_loaded:
|
98 |
try:
|
99 |
with st.spinner('Loading model... This might take a few minutes...'):
|
100 |
+
st.session_state.model, st.session_state.tokenizer, st.session_state.device = load_model()
|
101 |
st.session_state.model_loaded = True
|
102 |
st.success('Model loaded successfully!')
|
103 |
except Exception as e:
|
|
|
160 |
analysis = analyze_contract(
|
161 |
contract_code,
|
162 |
st.session_state.model,
|
163 |
+
st.session_state.tokenizer,
|
164 |
+
st.session_state.device
|
165 |
)
|
166 |
|
167 |
st.subheader("Analysis Results")
|